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Abstract. In this paper, we discuss the use of binary decision diagrams to represent general matrices. We
demonstrate that binary decision diagrams are an efficient representation for every special-case matrix in common
use, notably sparse matrices. In particular, we demonstrate that for any matrix, the BDD representation can be
no larger than the corresponding sparse-matrix representation. Further, the BDD representation is often smaller
than any other conventional special-case representation: for then × n Walsh matrix, for example, the BDD
representation is of sizeO(logn). No other special-case representation in common use represents this matrix in
space less thanO(n2). We describe termwise, row, column, block, and diagonal selection over these matrices,
standard an Strassen matrix multiplication, and LU factorization. We demonstrate that the complexity of each of
these operations over the BDD representation is no greater than that over any standard representation. Further,
we demonstrate that complete pivoting is no more difficult over these matrices than partial pivoting. Finally, we
consider an example, the Walsh Spectrum of a Boolean function.
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1. Introduction

Binary Decision Diagrams (BDD’s) are a data structure that has been used for years to
provide a cogent representation of Boolean functions. Indeed, they are now such a common
part of computer-aided design research that one can safely assume a working knowledge of
BDD’s on the part of virtually any reader.

BDD’s were introduced by Akers in 1959 [2]. In the early 1980’s, searching for a data
structure to undergird his switch-level simulator, Bryant [3] demonstrated how a BDD
could be modified to become a canonical representation of a Boolean function. Bryant
also demonstrated, given BDD’s representing two functionsf andg, how to compute the
functions f ¦ g, where¦ is any of the common binary Boolean operators. Finally, Bryant
demonstrated, in a famous theorem, that| f ¦ g| ≤ | f ||g|.

Bryant’s paper, together with the observation that almost every common function could
be built with a reasonably-sized BDD, opened the floodgates. In 1988, Malik et al. [9]
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demonstrated that BDD’s could be used to verify large multi-level combinational logic
functions. In 1990, Coudert, and Madre [6] demonstrated that one could represent sets of
finite-state machine states cogently using BDD’s, and then described an interation in which
one could find the reachable states of a finite-state machine, again represented as a BDD.
The key idea was confirmed in separate experiments by Touati et al. [14]. In 1992, Coudert
and Madre [7] demonstrated a method by which the primes of very large Boolean functions
could be implicitly represented using BDD’s. In 1993, these techniques were extended to
a full implicit logic minimizer [13, 8].

This year also saw the exploration of the relationship between BDD’s and matrices. In
[10], it is argued that anyn-variable BDD can be thought of as a vector of length 2n, or
as a binary matrix of size 2n−1 × 2n−1, or, for that matter, as an object of almost any
dimensionality. In [10], a BDD for a finite-state machine transition function is thought of
as a two-dimensional matrix, and a classic matrix technique is used to find its transitive
closure. In [4, 5], it is observed that though a BDD is generally thought to take only
terminals 0 and 1, there is no reason for this restriction; a BDD can have arbitrary integer
terminals, and there is no reason why a BDD should be restricted to only two terminals;
using independently the observations of [10], they argue that any integer matrix or vector
can be represented as a BDD, and give BDD representations for the Walsh matrix and for
the Walsh spectrum of a Boolean function.

We take the ideas introduced in [4, 5] and extend and expand upon them. Specifically, we
observe that there is no reason to restrict the terminals of a BDD to the integers; any finite
set will do. This is a minor contribution. Our central contribution, however, is to begin to
answer the following question. Given that wecanrepresent vectors and matrices as BDD’s,
should we? Is the BDD representation cogent? Do our matrix algorithms translate well
onto this new representation?

Our initial answer to these question is remarkably affirmative. Over the next several
pages, we will demonstrate that BDD’s are a cogent representation of matrices and vectors.
Further, we will demonstrate that many popular matrix algorithms translate easily and
naturally onto the BDD representation, occasionally enjoying a clean advantage over other
representations.

We do not purport to “prove” in any real sense that BDD’s are a superior representation
of general matrices. This paper is not the end, but rather the beginning of our inquiry.
Rather, our hope is to demonstrate some advantages and spur further research into this area.
It is our hope that the BDD representation of vectors and matrices will prove as fruitful
and fulfilling an area for CAD researchers in synthesis, physical design, and simulation as
research into sparse matrices has been.

2. Multi-terminal binary decision diagrams

The root of BDD’s lies in the Shannon Cofactor Expansion of a Boolean function. Given
a Boolean functionf : Bn 7→ B, thecofactorsof f are the functions obtained by partial
evaluation of f . For example, the cofactorfx1x2x4 is the function obtained by setting
x1 = 1, x2 = 0, x4 = 1 and evaluatingf .
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Cofactors are given their importance by the famous Shannon Expansion of a function.
Given any boolean functionf (x1, . . . , xn), and any variablexi , we may write:

f = xi fxi + xi fxi (1)

(1), carried out recursively, gives a full binary tree with leaves 0 and 1. Each internal
node represents a function, its left child its cofactor with respect toxi for some variablexi ,
and its right child its cofactor with respect toxi . This tree is called aShannon Treeof f .

Bryant’s seminal contribution was to order the variables of the function, so at thekth level
from the root the cofactors with respect toxk were taken. Then, applying the well-known
theorem:

g ≡ h ⇐⇒ gxk ≡ hxk and gxk ≡ hxk (2)

and working up from the leaves, he found the set of distinct functions in the tree. He then
obtained the BDD forf by folding together nodes representing identical functions into a
single node.

The central idea behind BDD’s can be easily adapted to more general functions. It is
straightforward to define functions from the boolean spaceBn onto R̃, whereR̃ is any finite
set; in general, we consider̃R to be an arbitrary finite subset of the reals. It is fairly easy to
see that (1)–(2) hold for any functionf : Bn 7→ R̃, and so in precisely the same manner as in
the two-terminal case, the Shannon Tree for such a function may be formed and converted
into its BDD representation; the only distinction between a BDD representing a function
onto the Booleans and one representing a function onto a finite subset of the reals is that
the latter has multiple leaves, not two as in the former case. As a result, we christen BDD’s
with leaves other than 0 and 1 asMulti-TerminalBDD’s, or MTBDD’s.

A moment’s thought persuades the reader that MTBDD’s not only represent functions
from a Boolean spaceBn onto a finite setR̃, but, more generally, functions from any finite
spaceD̃ 7→ R̃; one simply encodes the members ofD̃ usingdlg |D̃|e variables. Our interest
is in the case wherẽD is the finite set of the integers{0, . . . , m− 1}, or the case where it is
the finite set{0, . . . , m − 1} × {0, . . . , n − 1}. In the former case,f : D̃ 7→ R̃ is a vector;
in the latter, a matrix.

To make this picture concrete, consider a vectorv of lengthm; the vector is indexed by
an integer ofdlg me bits: One can think of each bit of the index as representing a separate
Boolean variable; the vector thus becomes a function from the Boolean spaceBdlg me onto
the range of the vector, and this can be represented as an MTBDD.

In representing a vector as a BDD, of course, some information is lost: specifically, the
dimensionality of the vector or matrix and the size of the vector/matrix in each dimension.
However, this information can be kept implicitly in a number of ways, and for the remainder
of this paper will be understood.

Implicitly, when given a vector with index bits{x1, . . . , xs}, we will assume thatx1 is
the most significant bit, andxs the least. For two-dimensional matrices, we by convention
denote the row index bits with the variables{x1, . . . , xs} and the column index bits with the
variables{y1, . . . , yt }, ordered as before most significant to least significant. A felicitous
ordering interleaves the row and column variables; i.e., a matrix is conceptually a function
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f (x1, y1, x2, y2, . . .) or f (y1, x1, . . .). This order on the boolean variables associated with
the index bits is not required, and may not be ideal for some matrices. This order, however,
leads to the following identification of the cofactors on the matrixM , when represented by
the function f as an MTBDD:(

fx1 y1 fx1 y1

fx1y1 fx1y1

)
where each submatrix is similarly decomposed.

Note that this ordering identifies each node in the MTBDD at levelk from the root with
a rectangular submatrix of size 2s+t−k. This identity is critical, for the following reasons:

1. Significant savings in the MTBDD representation occur when nodes in the BDD have
more than one parent; this corresponds to different cofactors in the Shannon tree mapping
on to identical functions. In matrix terms, this occurs when identical submatrices occur
in various parts of the original matrix. Since many of the special-case matrices that we
actually use (block matrices, sparse matrices, band matrices) have this property, this
gives some intuition to the idea that MTBDD’s are a cogent form of these special-case
matrices; and

2. Many matrix algorithms (LU decomposition, Strassen and standard matrix multiplica-
tion) are naturally phrased in terms of recursive-descent procedures on submatrices.
Since the submatrices map naturally onto cofactors of the BDD, the translation onto
BDD procedures is direct.

In the sequel, we will demonstrate the effect of (1) quantitatively, and (2) by giving BDD
versions of efficient matrix procedures.

Notation: In the sequel, we will use superscripts to denote vertices on the Boolean spaceBn

and subscripts to denote individual variables. Hencexk stands for an assignment of values
to the variablesx1, . . . , xs, while xk refers to one such variable.

Remark. For matricesA of size other than 2n × 2m, we use the standard trick [1] of
attaching an identify submatrix:[

A 0
0 I

]
For vectorsv of length other than 2n, we attach a special elementφ to represent missing
entries:

[vφ]

3. Size of MTBDD’s as a matrix representation

We can derive an upper bound on the size of an MTBDD by counting the number of paths in
the data structure. Since each path involves at most logn nodes, wheren is the dimension
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of the matrix (number of rows for a vector, number of rows or number of columns for a
matrix), and since each node must lie along some path, it follows that in the MTBDD with
p paths, there are at mostp logn nodes.

This is a worst-case upper bound, and corresponds to the case where the MTBDD is
simply the Shannon Tree; i.e., where the folding process has not resulted in any reduction
of the tree.

Lemma 3.1. Let f : Bn 7→ R̃ be any boolean vector function. Choose any element r of
R̃. If there are k elements x1, . . . , xk of Bn such that f(xi ) = r, then there are at most k
paths from the root of the MTBDD for f to r .

Proof: Induction onn. Forn = 0, trivial, since the only Boolean vector functions are the
constant functions over̃R, and the MTBDD’s for these functions have a single node and
no paths. Now suppose for alln < N, and consider some function fromBN 7→ R. Let the
left child of f be denotedf L and the right childf R. If there arek elementsx1, . . . , xk of
BN such thatf (xi ) = r , there are 0≤ l < k elements ofBN−1 such thatf L(xi ) = r , and
k − l elements ofBN−1 such thatf R(xi ) = r . By the inductive hypothesis, there are at
mostl paths fromf L to the terminalr , and at mostk − l paths fromf R to the terminalr .
Since each path from the root tor is an extension of either a path from the right child or a
path from the left child, it follows that there are at mostl + k − l = k paths from the root
to r . 2

Lemma 3.2. In any MTBDD, each non-terminal node must be on at least one path to
each of two distinct terminal elements.

Proof: This is obvious from a casual inspection of any BDD. A particularly fastidious
reader can construct an induction, if desired. 2

Theorem 3.1. The MTBDD representation of a matrix with total dimension n is of space
complexity O(n logn).

Proof: Since there aren elements, there are at mostn paths through the MTBDD by
Lemma 3.1. Further, each path is of lengthO(logn). 2

Theorem 3.2. The MTBDD representation of a matrix of dimension n and m nonzero
elements is of space complexity O(m logn).

Proof: By Lemma 3.1, there are at mostmpaths terminating in a nonzero terminal in such
an MTBDD; since each path is of lengthO(logn), there are at mostO(m logn) internal
nodes on these paths. Further, by Lemma 3.2, each internal node must be on a path to at least
two terminals, i.e., on at least one path to a nonzero terminal. There are mostO(m logn)

nodes on these paths, and hence at mostO(m logn) nodes in the MTBDD. 2

Note that the standard sparse-matrix representation has at least one pointer per row,
and one pointer per column, as well as space complexity proportional to the number of
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nonzero elements; this gives total space complexity ofO(m + n); note that ifm < n
logn ,

the worst-case complexity of the MTBDD respresentation is superior to that of the standard
sparse-matrix representation. In fact, the following lemma is of interest.

Theorem 3.3. Let R be any representation of matrices of total dimension n with m non-
trivial entries, m ¿ n. Then there exists at least one matrix M of total dimension n with m
nontrivial entries, m ¿ n, such that|M |R = O(m logn).

Proof: Given that there aren possible positions in the matrix, andm total non-trivial
entries, it follows that even if each non-trivial entry is identical there are(

n
m) such matrices.

Sincem ¿ n, (
n
m) ≈ nm over the domain of interest. Any representation valid fork objects

must be of sizeO(logk), hence the size of at least one matrix underR must be at least
O(lognm) = O(m logn). 2

Note that this implies that MTBDD’s are the optimal representation for very sparse
matrices.

A similar, but much more complex and longer argument, demonstrates that for a matrix
made up ofm constant blocks, total dimensionn, the size is at mostO(m logn).

4. Operations

Of course, no data structure is complete without a definition of the operations over it. In
this section we describe a set of operations over MTBDD’s, with complexity results.

4.1. On hashing

Computations over BDD’s derive great efficiency from the idempotency of operations; the
results of a BDD operation depend only upon the operands, not upon the context. As a
result, modern BDD packages ensure that every BDD node represents a distinct function,
and memorizes the results of every operation, typically using a hash table. If the operation
is ever repeated, no computation is done: the result is directly returned. As a result, no
operation is ever performed twice. This leads to complexity bounds in the case of termwise
operations that are linear in the sizes of the operands.

We use hashing extensively in our matrix package; virtually every operation has its results
remembered for later re-use.

4.2. Accessing and setting submatrices

In a matrix represented as an MTBDD, one accesses individual elements, column, row,
and diagonal vectors, and submatrices using a single mechanism: partial evaluation. Full
evaluation—setting each variable—obtains an individual element. Setting eachx variable
obtains a single row, and setting eachy variable obtains a single column. Setting somex
variables and somey variables obtains a submatrix.



               

P1: ICA/TKL P2: MVG

Formal Methods in System Design KL406-03-Fujita March 20, 1997 11:30

MULTI-TERMINAL BINARY DECISION DIAGRAMS 155

Elements, rows, columns, and blocks are set using a similar scheme. Any submatrix is
simply an MTBDD free of some variables: these variables are the indices of the submatrix
within the larger matrix. The set routine takes in three arguments: the matrix itself (here
denotedf ), the submatrix to be inserted(g) and a list of variables and values which indicate
where the submatrixg is to be inserted inf . As with all MTBDD routines, underlying this
is the Shannon Expansion.Set is a recursive-descent procedure, which walks through the
MTBDD representing the matrixf and creates the MTBDD with the appropriate submatrix
set tog.

At each level of the recursion,Set examines the top (most-significant) variable of each
of its three arguments. There are four cases.

1. top _var (list ) > top _var (f). Return a BDD in which one cofactor is theSet of
f with respect tog and the remainder oflist , and the other is simplyf .

2. top _var (g) > top _var ( f ). Return a BDD whose cofactors are theSet of f with
respect to the cofactors ofg.

3. xi = top _var ( f ) = top _var (g). In this case, the children off areSet recursively
appropriately with the children ofg.

4. xi = top _var ( f ) = top _var (list ). In this case, the appropriate cofactor off is
recursivelySet to g.

In the case where more than one of these cases apply, the identity of the top variable
determines the action. For example, if the top variable belonged tolist alone, case (1)
would apply even if case (3) applied as well.

The terminal case occurs whenlist is empty: in this caseg is returned as the result.
It is easy to see that the cost ofSet is bounded above byO(| f ||g|); this is a gross upper

bound, and the expected cost isO(logn), wheren is the total dimension off .

4.3. Termwise operations

Many operations are performed termwise over the elements of a matrix: examples are
matrix addition, matrix inner product, scalar multiplication, and (in the case of the binary
matrices) the Boolean operations. Briefly, a termwise operation¦ over a matrix is any
operation such that, for any pair ofn × m matricesM andM ′, (M ¦ M ′)i j = Mi j ¦ M ′

i j .
For termwise operations, we simply use Bryant’sApply operator. This derives from the

following classic theorem:

Theorem 4.1. Let f, g be any vector Boolean functions, f, g : Bn 7→ R̃, ¦ any termwise
operator h= f ¦ g iff hxi == fxi ¦ gxi and hxi == fxi ¦ gx1.

This theorem permits the use of Bryant’sApply procedure, or Rudell’s subsequent
improvements. In this code,newMTBDDis a procedure which takes as input a variable and
two MTBDD’s, and returns an MTBDD indexed with the variable and whose left and right
children are the two arguments.

In our BDD package,newMTBDDdoes not simply create a new BDD, but, rather, keeps a
lookup table of existing BDD’s, and if one is found that matches the requested BDD, the old
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BDD is returned. In this manner there is exactly one BDD per function, which simplifies
greatly the lookup computations that permeate the matrix package.

Apply _Operator (f , g, Op) {
Results = hash _table ();
Return Apply (f , g, Op);

}
Apply (f , g, Op) {

if ((Result = Lookup (f , g, Op, Results )) 6= NULL) return Result ;
if (f is a terminal )

if (g is a terminal ) Result = f op g ;
else

Result = newMTBDD(g.var , Apply (f , g.left , Op),
Apply (f , g.right , OP));

elsif (g is a terminal )
Result = newMTBDD(f .var , Apply (f .left , g, Op),

Apply (f .right , g, Op));
elsif (top variables of f and g are equal )

Result = newMTBDD(f .var , Apply (f .left , g.left , Op),
Apply (f .right , g.right , Op));

elsif (top variable of f precedes top variable of g )
Result = newMTBDD(f .var , Apply (f .left , g, Op),

Apply (f .right , g, Op));
else

Result = newMTBDD(g.var , Apply (f , g.left , Op),
Apply (f , g.right , Op));

Store (Results , f , g, Op, Result );
}

Note immediately that there is at most one node in the resulting MTBDD for each call to
this routine. The storage of results and their lookup ensure that there is at most one call per
pair of nodes fromf andg. Hence ifh = f ¦ g then|h| ≤ | f ||g|. This of course recaps
Bryant’s seminal theorem for two-terminal BDD’s.

4.4. “Shadow” nodes

As mentioned above, MTBDD’s themselves contain no hint of the dimensionality of the
represented matrix or vector; at best, from a raw MTBDD, one can deduce the size of
the smallestrepresented matrix or vector (2n, wheren is the number of variables of the
MTBDD). However, each MTBDD represents aninfinite number of matrices and vectors.
To see the problem, consider the MTBDD 1. This surely represents a constant matrix or
vector. But that matrix might be the scalar 1, the 2-vector [1 1], the two-by-two matrix
(

1 1
1 1), or anyconstant matrix of size 2m elements (anym ≥ 0), of anydimensionality.
This difficulty arises even within well-defined MTBDD’s; consider, for example, the

matrix: (
1 1
0 1). This is represented by the MTBDD pictured in figure 1.
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Figure 1. MTBDD illustrating paths of unequal length.

Figure 2. MTBDD with a shadow node.

There are many possible methods of resolving this difficulty. One method uses the
variable associated with a node (the variable which labels its outgoing edges) to denote the
“level” of the node; operations over the BDD keep track of the expected level, and note a
discrepancy as the repetition of the BDD. The difficulty with this idea is that the resulting
code is fairly complicated and filled with bookkeeping.

A cleaner and more elegant solution ensures that every node is at a well-defined distance
from the root of the MTBDD; this is done by introducing, along edges that skip levels
in the MTBDD, one node per level skipped. Both outgoing edges from these “shadow”
nodes are directed to the appropriate successor node along the original edge. An example
on our original MTBDD is given in figure 2. MTBDDs with these properties are called
Quasi-ReducedMTBDDs; the property of quasi-reduction was first defined by Sasao [11],
who applied it to BDD’s and a variant, Ternary Decision Diagrams (TDDs).

Add_Shadow_Nodes(B, i ) {
if (B is a terminal ) return ;
left ← B→ left ; right ← B→right ;
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for (node ← left , j ← topvar (left ) - 1 ; j > i ; --j )
node ← newMTBDD(j , node , node );

B→left ← node ;
Add_Shadow_Nodes(B→left , topvar (B→left ));
for (node ← right , j ← topvar (right ) - 1 ; j > i ; --j )

node ← newMTBDD(j , node , node );
B→right ← node ;
Add_Shadow_Nodes(B→right , topvar (B→right ));

}

The procedure to add shadow nodes is quite straightforward, and is given above.
Though shadow nodes do add to the size of an MTBDD, they do not affect the complexity

results derived above. Note that at mostO(logn) shadow nodes are added to any edge in
any MTBDD; hence the size of any MTBDD can grow by (at most) a multiplicative factor
of O(logn). Even this grossly overstates the size of the size increase to an MTBDD.
In order for an MTBDD to grow by a factor ofO(logn), each path through the original
MTBDD (before the addition of shadow nodes) must be of lengthO(1); this can only hold
for constant matrices and vectors. Further, it is critical to note that the major results on
paths and sizes assumeO(logn) nodes on every path through an MTBDD. Hence, even
with the addition of shadow nodes, the maximum sizes of the MTBDD for sparse, dense,
and permutation matrices are as given above.

4.5. Vector multiplication

Up until now, we have spoken only of thetotal dimensionof a matrix, without considering
its exact shape, or number of dimensions. For vector operations, of course, both the size
and the shape of the matrix is relevant in determining the result. Of course, the shape of a
matrix represented by an MTBDD is arbitrary, and must be specified separately.

4.5.1. Multiplication of a vector by a vector. The result of vector multiplication is quite
straightforward. Given vectors,f andg, both of lengthm, we have:

f ◦ g =
m−1∑
i =0

fi gi

When f, g are represented as Boolean functions,f, g : Bdlogme 7→ R̃, this is rewritten:

[ fx1 fx1]

[
gx1

gx1

]
(3)

and hence:

f ◦ g = fx1 ◦ gx1 + fx1 ◦ gx1 (4)
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Equation (4) forms the basis of the recursion procedure:

Vector _Multiply (f , g) {
if (terminal cases ) return (terminal _case (f , g));
xi = top _var (f , g);
Result = Vector _Multiply ( fxi , gxi ) + Vector _Multiply ( fxi , gxi )
Store (f , g, Result );
return Result ;

}

The termination conditions need some scrutiny. If bothf andg are terminals, the result
is not simply f g—consider the case wherefi = gi = 1 for every i . The vectors are
represented by the constant function 1, but the result ism for m-length vectors. The reason
for this disparity is that a constant terminal represents not a single entry, but rather a block
of constant entries of the some size. Thus, whenf andg are both terminals, the result is
f gk wherek is the size of the block.

The size of the constant block represented by the terminal can be deduced during the
computation. The size is the size of the partial vector. At the top level of the recursion tree,
this size is 2m, and is reduced by half with each recursive call; we can keep track of the
current size simply by passing the size intoVector _Multiply as an integer argument.
The result follows.

Vector _Multiply (f , g, n) {
if ((Result = Lookup (f , g, n)) 6= NULL)

return Result ;
if (f is a terminal )

Result = Multiply _Vector _by_Scalar (f , g, n);
elsif (g is a terminal )

Result = Multiply _Vector _by_Scalar (g, f , n);
else

xi = top _var (f , g);
Result = Vector _Multiply ( fxi , gxi , n − 1)

+ Vector _Multiply ( fxi , gxi , n − 1)
Store (f , g , n, Result );
return Result ;

}
Multiply _Vector _by_Scalar (f , g, n) {

if ((Result = Lookup (f , g, n)) 6= NULL)
return Result ;

if (g is a terminal )
Result = f. value∗ g. value∗ 2n;

else
xi = top _var (g);
Result = Multiply _Vector _by_Scalar ( f , gxi =0, n-1 )

+ Multiply _Vector _by_Scalar ( f, gxi =1, n-1 );
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Store (f , g, n, Result );
return Result ;

}

We’ve broken the case where one of the two vectors is a scalar out for clarity, but they
can be treated together for the purposes of complexity analysis. The storage and retrieval
of results implies that there is at most one multiplication for each triple(µ, ν, k), whereµ

is a node off, ν is a node ofg, andk is an integer between 0 andn; hence there are at most
O(| f ||g|n) multiplications. Further, there is at most one lookup on a triple(µ, ν, n) per
unique pair (Parent(µ), Parent(ν)); hence there are at mostO(| f ||g||n|) separate hash
table lookups. Hence the complexity of vector multiplication isO(| f ||g|n|).

4.5.2. Multiplication of a matrix by a vector. The case of multiplying a matrix by a vector
is almost identical to that of multiplying a vector by a vector. In general, we have:

h(x1, . . . , xm) = f (x1, y1, . . . , xm, yn) ◦ g(y1, . . . , yn)

The use of the variables(y1, . . . , ym) to index the rows off gives us the following picture
of f : [

fx1 y1 fx1y1

fx1y1 fx1y1

]
and the following picture of matrix multiplication:[

hx1

hx1

]
=

[
fx1 y1 fx1y1

fx1y1 fx1y1

] [
gy1

gy1

]
Hence:

hy1 = fx1 y1 ◦ gx1 + fx1y1 ◦ gy1

hy1 = fx1y1 ◦ gx1 + fx1y1 ◦ gy1

This forms the basis of the recursion procedure. Again, the terminal cases must be carefully
reviewed. We have the following:

1. f is a function ofx variables only. In this case, each row off is a constant function,
and hence each position ofh can be found by multiplying the relevant constant function
of f by the sum of the entries ofg. As a result, to obtainh we multiply each terminal
of f by the entries ofg.

2. g is a scalar function,f is a function of somey variables and possibly somex variables.
In this case,g is a constant function, but the rows off are not constants; we reduce the
rows of f through the usual Shannon division.

In order to implement case (1) above, we need a routine which sums up vectors represented
as MTBDD’s.
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Sum_Vector (g, n) {
if ((Result = Lookup (g, n)) 6= NULL)

return Result ;
if (g is a terminal )

Result = g.value * 2n;
else

yi = top _var (g);
Result = Sum_Vector (gyi , n-1 )+ Sum_Vector (gyi , n-1 );

Store (g, n, Result );
return Result ;

}

With this in hand, we can easily write the routine to multiply a matrix by a vector:

Multiply _Matrix _By_Vector (f , g, n) {
if ((Result = Lookup (f , g, n)) 6= NULL)

return Result ;
if (f is independent of y variables )

Sum = Sum_Vector (g, n);
Result = Duplicate (f );
foreach terminal R of Result

R.value = R.value * Sum;
elsif (g is a terminal )

Result = Multiply _Matrix _by_Scalar (f , g, n);
elsif top _var (f ) > top _var (g)

yi = top _var (f );
Result = newMTBDD(xi, Multiply _Matrix _By_Vector ( fxi , g, n),

Multiply _Matrix _By_Vector ( fyi , g, n))
else

yi = top _var (g);
Left = Multiply _Matrix _By_Vector ( fyi , gyi , n-1 );
Right = Multiply _Matrix _By_Vector ( fyi , gyi , n-1 );
Result = Apply _Operator (Left , Right , PLUS);

Store (f , g, n, Result );
return Result ;

}
Multiply _Matrix _by_Scalar (f , g, n) {

if ((Result = Lookup (f , g, n)) 6= NULL)
return Result ;

if (f is independent of y variables )
Sum = g.value * 2n;
Result = Duplicate (f );
foreach terminal R of Result

R.value = R.value * Sum;
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else
yi = top _var (f );
Result = newMTBDD(xi, Multiply _Matrix _by_Scalar ( fyi , g,

n-1 ),
Multiply _Vector _by_Scalar ( fyi , g, n-1 ));

Store (f , g, n, Result );
return Result ;

}

4.5.3. Multiplying a matrix by a matrix. Consider the problem of finding a matrix product:
h = f g, where f andg are matrices. By now the recursion is familiar to the reader:[

hxz hxz

hxz hxz

]
=

[
fxy fx y

fxy fxy

] [
gyz gyz

gyz fyz

]
Once again the recursion suggested is the straightforward one given by the equations,

and once again it is easy to see that an integern is required to keep track of the sizes of the
constant blocks. In the case of the matrix multiplication, the recursion is somewhat simpler
due to the symmetry of the operands:

Matrix _Multiply ( f, g, n, i) {
if (Result = lookup ( f, g, n, i, MULT)) return Result ;
if ( f and g are both constants ) return f g2n;
Q1 = Apply ( Matrix _Multiply ( fxi yi , gyi zi , i + 1, n − 1),

Matrix _Multiply ( fxi yi , gyi zi , i + 1, n − 1), ADD);
Q2 = Apply ( Matrix _Multiply ( fxi yi , gyi zi , i + 1, n − 1),

Matrix _Multiply ( fxi yi , gyi zi , i + 1, n − 1), ADD);
Q3 = Apply ( Matrix _Multiply ( fxi yi , gyi zi , i + 1, n − 1),

Matrix _Multiply ( fxi yi , gyi zi , i + 1, n − 1), ADD);
Q4 = Apply ( Matrix _Multiply ( fxi yi , gyi zi , i + 1, n − 1),

Matrix _Multiply ( fxi yi , gyi zi , i + 1, n − 1), ADD);
R1 = newMTBDD(zi, Q1, Q2);
R2 = newMTBDD(zi, Q3, Q4);
Result = newMTBDD(xi, R1, R2);
Store ( f, g, n, i, MULT, Result );
return Result ;

}

The variablei in this case is used to track which set of variables is being used at this
level of recursion. For clarity, here we have used the natural order of the variables, and
have interleaved thex, y, andz variables.

This routine can be improved by using the Strassen [12] products at each level of the
recursion, rather than the simple, naive block method outlined here. The applicability
of the Strassen procedure is evident, since Strassen’s method is a simple variant of the
divide-and-conquer approach outlined above.
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5. Permutation matrices

An interesting class of matrix well worth study is thepermutation matrix. A permutation
matrix is simply a square binary matrix with precisely one one in each row and one one in
each column; its effect, when applied to a vector, is to permute the elements of the vector.

Permutation matrices arise most often in LU decomposition and Gaussian elimination.
The most common representation is as a vectorV of lengthn, whereVi = j iff Pi j = 1.
Such a representation is easily seen to be of sizeO(n logn); since there aren! permutation
matrices, this is optimal.

A simple consequence of the sparse matrix theorem is that the space complexity of the
MTBDD representation of a permutation matrix is alsoO(n logn). This is not the most
interesting measure, however. A more precise estimate is found for ann × n permutation
matrix which permutes onlyk elements.

It is easy to see that there must beO((
n
k )(k! −2k−1)) such matrices, and hence any repre-

sentation must be of sizeO(k logn). The most obvious efficient representation—a linked
list of k elements, where the(i, j ) coordinate of each permuted element is stored—is plainly
O(k logn), i.e., optimal. Our purpose here is to investigate the MTBDD representation.

First, note that thek elements off the main diagonal form a Boolean function withk
minterms: hence there are at mostk paths through its BDD to the one terminal, and hence
its size is at mostO(k logn), optimal.

The measure given above requires some computational complexity when the permutation
matrix is used, however, both in the MTBDD and in the linked-list case. Thus, it is often
desired to represent the unmoved elements. It is interesting to note that when very few
elements are moved, the MTBDD representation under the natural order is in fact smaller
than theO(n logn) representation generally thought necessary.

A permutation matrix that moves exactlyk elements has preciselyk one elements off the
main diagonal. Such a matrix can be written:

P = In ⊕ M

whereIn is then×n identity matrix,⊕ is the termwiseexclusive -or operation (addition
modulo 2) andM is a matrix defined as follows:

Mi, j =
{

Pi, j i 6= j
P̄i, j i = j

Note thatM has 2k one elements. By the sparse matrix theorem, therefore,M is of size
O(k logn). SinceP = In ⊕ M , by Bryant’s Theorem|P| ≤ |In||M |. By construction,In

is of sizeO(logn), and hence we conclude thatP is of size atmost O(k log2 n). Note that
this is smaller thanO(n logn) whenk < n / logn.

5.1. Construction of permutation matrices

A permutation matrix is constructed precisely in the manner given in the proof above;
specifically, the “deviation”M of the permutation matrix from the identity is constructed;
the result is then exclusive-or’d to the identity matrix.
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The deviation matrix is easy to form; it is easy to see that ifk elements are permuted, it
is equivalent to a logic function of 2k minterms.

6. L/U decomposition

L/U Decomposition on MTBDD’s is a fascinating topic. It is trivial to implement the
standard Gaussian-elimination-with-pivoting algorithm. It is worth noting, however, that it
is easy to maintain the maximum element of an MTBDD with the root node, and compute
it dynamically inO(1) time. Since this is the case, it is easy to find the maximal element
in an MTBDD in O(1) time. This implies immediately that complete pivoting—where the
largest element of a matrix is chosen as the pivot, not merely the largest element on the
diagonal—is as easy as partial pivoting on an MTBDD. This is important, for complete
pivoting is numerically more desirable than partial pivoting, but is avoided with standard
packages due to the expense of searching the entire matrix for the pivots.

While the standard Gaussian-elimination algorithm is easily implemented, we can in fact
do somewhat better. The optimal L/U factorization algorithm is found in [1], and is based
on a recursive-descent paradigm. This suggests that the optimal algorithm may map nicely
onto the MTBDD structure. In fact, this the case, as we show in the remainder of this section.

6.1. Recursive-descent LUP factorization

The classic recursive-descent LUP factorization algorithm is taken from [1] and adapted to
MTBDD’s. We give the algorithm here, and discuss its adaptation below.

/ * ProcedureFactor (A, m, p) returns L ,U, P such that
L is lower-triangular m × m,U is upper triangular m × p,
and P is a p × p permutation matrix such that A = LU P,

where A is an m × p matrix of rank m */
Factor (A, m, p)
1. if m == 1 {
2. L = [1];
3. c is any column containing a nonzero element of A
4. P = permute (1, c );
5. U = AP;
6. return L ,U, P;
7. } else {
8. B is the top m/2 rows of A;
9. C is the bottom m/2 rows of A;
10. (L1,U1, P1) = Factor (B, m/2, p);
11. D = C P−1

1 ;/ * Hence DP1 = C */
12. E is the leftmost m/2 columns of U1 / * E is

upper-triangular , m/2 × m/2 */
13. F is the leftmost m/2 columns of D;
14. G = D − F E−1U1
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/ *Note since E is square and upper triangular , E is invertible
Also note that since U1 = [E | K ],where K is an m/2 × (p − m/2)

matrix , E−1U1 = [ Im/2 | E−1K ], and so F E−1U1 = [F | F E−1K ]
Since D = [F | K1], G = [0 | K1 − F E−1K ] */

15. (L2,U2, P2) = FACTOR(K1 − F E−1K , m/2, p − m/2)

16. P3 =
[

Im/2 0
0 P2

]
17. H = U1P−1

3

18. L =
[

L1 0
F E−1 L2

]
/ * L is m × m */

19. U =
[

H
0 U2

]
/ * U is m × p */

20. P = P3P1

21. return (L ,U, P)

}

The initial call isFactor (A, n, n); note, as above, that we may assume thatn = 2r ,
for some integerr > 0.

It is easy to see that since the initialm is a power of 2, so is each subsequentm; further,
cutting the matrix in half horizontally simply corresponds to evaluating any unevaluated
row variable; for convenience, the top row variable will be chosen. Hence the initial split
of matrix A into matrix B andC simply corresponds to taking two cofactors ofA.

The only central difficulty with translation to an MTBDD form is the problem of cutting
off the leftmostm/2 columns ofG in the recursive call toFACTORon line 15; sincep is
not cut on the way down in the same manner thatm is, even if p is a power of 2 at some
level it is not assured thatp − m/2 is: consider 16− 4 = 12. Hence splitting the matrix
vertically is not a matter of a simple evaluation. However, note we do not actually need
to split the matrix; examination of the Aho-Hopcroft-Ullman algorithm reveals that every
matrix actually factored into(L1,U1) is a square matrix of sizem/2. Further, if these
matrices are actually plotted on the original matrixA, it is seen that these square matrices
are of size a power of 2, straddling the main diagonal of matrixA.

This picture gives a useful alternative notion of the Aho-Hopcroft-Ullman algorithm, and
relates it to the classic iterative procedure for LU decomposition.

Consider the classic iterative algorithm:

LU_Decomp(A){
n ← |A|; U ← A; L ← In;
for (i ← 0; i < n; + + i)

pivot the maximal element of Ui..n,i..n into Uii ;
for ( j ← i + 1; j < n; + + j)

L ji ← U ji /Uii ;
U ji ← 0;
for (k ← i + 1; k < n; + +k)

U jk ← U jk − U ji /Uii ;
}
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Conceptually, on thei th iteration, thei th column ofU is turned to 0 fromi + 1 ton, and
the multiplicands necessary to do that are stored in the elementsLi j , for i < j < n.

Now, the principle of the iterative algorithm is easily generalized to recursive descent:(
A00 A01

A10 A11

)
=

(
L00 0
L10 L11

) (
U00 U01

0 U11

)
whereU00,U11 are upper triangular,L00, L11 are lower triangular, andL10,U01 are general
matrices.

2 × 2 Gaussian Elimination solves forL ,U :

A00 = L00U00

A01 = L00U01

A10 = L10U00

A11 = L10U01 + L11U11

These equations are easily solved: one first recursively factorsA00 into L00 andU00, then
solves:

U01 = L−1
00 A01

L10 = A10U
−1
00

and then recursively factorsA11 − L10U01 to obtainL11 andU11.
Analysis of this naive algorithm gives:

S(n) = 2S(n/2) + 2T(n/2) + 2M(n/2)

whereT(n) is the time to factor ann × n matrix, as before, andM(n) is time to multiply
two n × n matrices. Noting thatT(n) ≤ cM(n), we obtain:

S(n) ≤ 2S(n/2) + c1M(n/2)

and it is easy to see thatS(n) ≤ c2M(n) for some constantc2.
Returning to the iterative procedure, the middle loop conceptually consists of three steps:

1. Computation of the multiplicand;
2. “Zeroing” the appropriate element ofU ; and
3. Computation of the row ofU

The great insight of the AHU recursive-descent procedure was the recognition that the
multiplicand need not simply beUii /U ji , but could in fact beF E−1, whereE was an
m × m submatrix centred about the diagonal andF was am × m matrix directly below
E. The computation of the new row ofU—the innermost loop of the iterative algorithm—
becomes the computation of them rows ofU including them × m submatrixF (note that
F is zeroed in a manner precisely analogous toU ji in the standard algorithm).
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The point, then to note is that the AHU algorithm is in fact quite similar to the iterative
algorithm; a pivot is selected, and then moved to the main diagonal; the element immediately
below the multiplicand is zeroed. This implies that them × p matrix A is in fact the
rightmostp columns of anm × n matrix [0 A]; conceptually, we may as easily deal with
this supermatrix.

This picture of the AHU algorithm permits us to note the following fact: the matrixE,
for every call of the algorithm, is a square matrix of size 2k × 2k, 0 ≤ k ≤ n. Further,
E consists of the submatrixUii · · ·Ui +2k−1,i +2k−1 of the final upper triangular matrixU ,
for somei = c2k+1. SinceE is such a matrix, it represents a cofactor of the final upper-
triangular matrixU with the variablesxn−k, yn−k set to 0, the variablesxj , yj set arbitrarily
for 0 ≤ j < k and the variablesxn−i , yn−i not set for 1≤ i < k. It must therefore follow
that F is found as a cofactor ofU1, by setting all thex andy values up ton − k as forE,
settingxn−k = 1, yn−k = 0 and not settingxn−i , yn−i for i ≤ k.

This observation permits us to consider a minor variant of the AHU algorithm:Factor
(A, 2m, 2n, p, k) factors a 2m × 2n matrix A whose leftmost 2n − p columns are identically
0 into factorsL ,U, P such that:

1. L is 2m × 2m lower-triangular
2. U is a 2m × 2n matrix, [0 V], where 0 is 2m × 2n − p andV is 2m × p, upper-triangular
3. P is a 2n × 2n permutation matrix of the form [I2n−p 0

0 P′ ]; i.e., P does not permute the
first 2n − p columns ofA

4. A = LU P

In other words, we simply modify the AHU algorithm to retainall the columns ofA,
throughout the recursion; the fact that this procedure returns the result of the AHU procedure
is to note that itis the AHU procedure in the case wherep = 2n.

The only significant modification to the AHU procedure is in lines 12–13 (which become
13–14), whereE and F are computed.E and F are now not the leftmost 2m−1 columns
of U1 andD, but are a selection of columns with indices 2n − p · · · 2n + 2m − (p + 1); as
mentioned in the foregoing, these are selected by a an appropriate setting of the variables
x0, . . . , xn−(m+1), y0, . . . , yn−(m+1). Note that the variablesxj , yj are set before entry for
0≤ j < n − (m + 1).

This observation lets us adapt the AHU algorithm with only a little simple bookeeping,
namely passing the values already set into FACTOR as a separate argument, which we
denote here asS.

/ * ProcedureFactor (A, m, n, S, k) returns L ,U, P such that
L is lower-triangular 2m × 2m,U is 2m × 2n

of the form of (2) above ,
and P is a 2n × 2n permutation matrix such that A = LU P,
where A is an 2m × 2n matrix of rank 2m */
Factor (A, m, n, S, k)
1. if m == 0 {
2. L = [1];
3. c is any column containing a nonzero element of A
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4. d is the column selected by S
5. P = permute(d , c) ;
6. U = AP;
7. return L ,U, P;
8. } else {
9. B ← A|xk=0;
10. C ← A|xk=1;
11. (L1,U1, P1) = Factor (B, m − 1, n, S

⋃{yk = 0, xk = 0}, k + 1);
12. D = C P−1

1 ; / * Hence DP1 = C */
13. E ← U1|S⋃{yk=0} / * E is upper-triangular , 2m−1 × 2m−1 */
14. F ← D|S⋃{yk=0};
15. G = D − F E−1U1

/ * Note since E is square and upper triangular , E is
invertible
Also note that since U1 = [0 E K]
E−1U1 = [0 I2m−1 E−1K ], and so F E−1U1 = [0 F F E−1K ]
Since D = [0 F K1], G = [0 0 K1 − F E−1K ] */

16. (L2,U2, P2) =FACTOR(G, m − 1, n, S
⋃{yk = 1, xk = 1}, k + 1);

17. H = U1P−1
2

18. L = ((yk = 0) ∧ ((xk = 0) ∧ L1) ∨ ((xk = 1) ∧ F E−1)) ∨ ((yk = 1) ∧ (xk = 1) ∧ L2)

19. U = ((xk = 0) ∧ H) ∨ ((xk = 1) ∧ (yk = 1) ∧ U2)

20. P = P2P1

21. return (L ,U, P)

}

The initial call isFactor (A, n, n, ∅, 0).
Note that the assembly operations in the lines 18–19 are Boolean operations; these

conform exactly to the matrix operations given in the original version of the AHU procedure,
when the matrix is considered as a function from the Boolean space of index variables onto
the range of the matrix. Note also that the permutation matrixP3 has disappeared from
this variant of the algorithm; this is because, it is now unnecessary to construct large
permutation matrices from smaller ones: all permutation matrices generated at every stage
of this algorithm are 2n × 2n, rendering the reconstruction operations superfluous.

As with all the other MTBDD operations,LU P factorization is idempotent, and hence
the results of any call can be stored and retrieved for a subsequent call. Note that not only
the matrixA, represented as an MTBDD, but also the parametersm andn must be used as
a hash key, to resolve the dimensionality issues given above.

7. Conclusion

In the foregoing, we have demonstrated that MTBDD’s are efficient representations of
matrices. We have demonstrated that MTBDD’s are the space-optimal representation of
both dense and sparse matrices, and of permutation matrices. Further, we have demonstrated
that the optimal time-complexity algorithms for the basic suite of matrix operations translate
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directly and elegantly onto the MTBDD structure, without any reduction in the asymptotic
efficiency of the algorithms.
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