Formal Methods in System Design 10, 149-169 (1997)
(© 1997 Kluwer Academic Publishers. Manufactured in The Netherlands.

Multi-Terminal Binary Decision Diagrams:
An Efficient Data Structure for Matrix Representation

M. FUJITA
Fujitsu Laboratories of America, 3350 Scott Blvd., Bldg #34, Santa Clara, CA 95054

P.C. MCGEER
Cadence Berkeley Laboratories, 1919 Addison St. #303, Berkeley, CA 94704

J.C.-Y. YANG
Center for Integrated Systems, Stanford University
On Leave Currently at YAHOO! Inc.

Abstract. In this paper, we discuss the use of binary decision diagrams to represent general matrices.
demonstrate that binary decision diagrams are an efficient representation for every special-case matrix in com
use, notably sparse matrices. In particular, we demonstrate that for any matrix, the BDD representation cal
no larger than the corresponding sparse-matrix representation. Further, the BDD representation is often sm
than any other conventional special-case representation: far then Walsh matrix, for example, the BDD
representation is of siz&(logn). No other special-case representation in common use represents this matrix
space less tha®(n?). We describe termwise, row, column, block, and diagonal selection over these matrice
standard an Strassen matrix multiplication, and LU factorization. We demonstrate that the complexity of eact
these operations over the BDD representation is no greater than that over any standard representation. Fu
we demonstrate that complete pivoting is no more difficult over these matrices than partial pivoting. Finally, \
consider an example, the Walsh Spectrum of a Boolean function.

Keywords: Binary Decision Diagrams, Matrix Algorithms, Multi-Terminal BDD's, Walsh Transform, Spectral
Methods

1. Introduction

Binary Decision Diagrams (BDD's) are a data structure that has been used for years
provide a cogent representation of Boolean functions. Indeed, they are now such a comr
part of computer-aided design research that one can safely assume a working knowledg
BDD’s on the part of virtually any reader.

BDD's were introduced by Akers in 1959 [2]. In the early 1980’s, searching for a dat
structure to undergird his switch-level simulator, Bryant [3] demonstrated how a BDI
could be modified to become a canonical representation of a Boolean function. Bryz:
also demonstrated, given BDD’s representing two functibrssdg, how to compute the
functions f ¢ g, whereo is any of the common binary Boolean operators. Finally, Bryant
demonstrated, in a famous theorem, tHat g| < | f||g|.

Bryant’s paper, together with the observation that almost every common function cot
be built with a reasonably-sized BDD, opened the floodgates. In 1988, Malik et al. [

150 FUJITA, MCGEER AND YANG

demonstrated that BDD’s could be used to verify large multi-level combinational logi
functions. In 1990, Coudert, and Madre [6] demonstrated that one could represent set
finite-state machine states cogently using BDD'’s, and then described an interation in wh
one could find the reachable states of a finite-state machine, again represented as a E
The key idea was confirmed in separate experiments by Touati et al. [14]. In 1992, Couc
and Madre [7] demonstrated a method by which the primes of very large Boolean functic
could be implicitly represented using BDD's. In 1993, these techniques were extended
a full implicit logic minimizer [13, 8].

This year also saw the exploration of the relationship between BDD’s and matrices.
[10], it is argued that anp-variable BDD can be thought of as a vector of length&
as a binary matrix of size"2? x 2"1, or, for that matter, as an object of almost any
dimensionality. In [10], a BDD for a finite-state machine transition function is thought o
as a two-dimensional matrix, and a classic matrix technique is used to find its transiti
closure. In [4, 5], it is observed that though a BDD is generally thought to take onl
terminals 0 and 1, there is no reason for this restriction; a BDD can have arbitrary intec
terminals, and there is no reason why a BDD should be restricted to only two termina
using independently the observations of [10], they argue that any integer matrix or vec
can be represented as a BDD, and give BDD representations for the Walsh matrix and
the Walsh spectrum of a Boolean function.

We take the ideas introduced in [4, 5] and extend and expand upon them. Specifically,
observe that there is no reason to restrict the terminals of a BDD to the integers; any fir
set will do. This is a minor contribution. Our central contribution, however, is to begin t
answer the following question. Given that eenrepresent vectors and matrices as BDD’s,
should we? Is the BDD representation cogent? Do our matrix algorithms translate w
onto this new representation?

Our initial answer to these question is remarkably affirmative. Over the next sevel
pages, we will demonstrate that BDD’s are a cogent representation of matrices and vect
Further, we will demonstrate that many popular matrix algorithms translate easily al
naturally onto the BDD representation, occasionally enjoying a clean advantage over ot
representations.

We do not purport to “prove” in any real sense that BDD'’s are a superior representati
of general matrices. This paper is not the end, but rather the beginning of our inqui
Rather, our hope is to demonstrate some advantages and spur further research into this
It is our hope that the BDD representation of vectors and matrices will prove as fruitfi
and fulfilling an area for CAD researchers in synthesis, physical design, and simulation
research into sparse matrices has been.

2. Multi-terminal binary decision diagrams

The root of BDD’s lies in the Shannon Cofactor Expansion of a Boolean function. Give
a Boolean functionf : B" — B, thecofactorsof f are the functions obtained by partial
evaluation of f. For example, the cofactofy, sy, iS the function obtained by setting
X1 = 1, X, = 0, X4 = 1 and evaluating .

MULTI-TERMINAL BINARY DECISION DIAGRAMS 151

Cofactors are given their importance by the famous Shannon Expansion of a functic
Given any boolean functioffi(xy, .. ., Xn), and any variable;, we may write:

(1), carried out recursively, gives a full binary tree with leaves 0 and 1. Each intern
node represents a function, its left child its cofactor with respext tor some variable,
and its right child its cofactor with respectxp. This tree is called &hannon Treef f.
Bryant’s seminal contribution was to order the variables of the function, so kitttevel
from the root the cofactors with respectipwere taken. Then, applying the well-known
theorem:

g=h<=g =hy and gg =hxg (2)

and working up from the leaves, he found the set of distinct functions in the tree. He th
obtained the BDD forf by folding together nodes representing identical functions into &
single node.

The central idea behind BDD’s can be easily adapted to more general functions. |t
straightforward to define functions from the boolean sgftento R, whereR is any finite
set; in general, we consid&to be an arbitrary finite subset of the reals. It is fairly easy to
see that (1)—(2) hold for any functidhn: B" — R, and so in precisely the same manner asin
the two-terminal case, the Shannon Tree for such a function may be formed and convel
into its BDD representation; the only distinction between a BDD representing a functic
onto the Booleans and one representing a function onto a finite subset of the reals is
the latter has multiple leaves, not two as in the former case. As a result, we christen BDI
with leaves other than 0 and 1 Ehulti-TerminalBDD's, or MTBDD’s.

A moment’s thought persuades the reader that MTBDD’s not only represent functio
from a Boolean spad@” onto a finite seR, but, more generally, functions from any finite
spaceD — R; one simply encodes the membergoiising[lg | D|] variables. Our interest
is in the case wherB is the finite set of the integet$, . .., m — 1}, or the case where it is
the finite sef0,...,m—1} x {0, ..., n—1}. Inthe former casef : D — Ris a vector;
in the latter, a matrix.

To make this picture concrete, consider a veetof lengthm; the vector is indexed by
an integer offlg m] bits: One can think of each bit of the index as representing a separa
Boolean variable; the vector thus becomes a function from the Boolean Bp&®e onto
the range of the vector, and this can be represented as an MTBDD.

In representing a vector as a BDD, of course, some information is lost: specifically, tl
dimensionality of the vector or matrix and the size of the vector/matrix in each dimensio
However, this information can be kept implicitly in a number of ways, and for the remainde
of this paper will be understood.

Implicitly, when given a vector with index bits, .. ., Xs}, we will assume thak; is
the most significant bit, ank; the least. For two-dimensional matrices, we by convention
denote the row index bits with the variables, . . ., Xs} and the column index bits with the
variables{y, ..., y;}, ordered as before most significant to least significant. A felicitous
ordering interleaves the row and column variables; i.e., a matrix is conceptually a functi

152 FUJITA, MCGEER AND YANG

f (X1, Y1, X2, V2, .. .) or f(y1, X1, ...). This order on the boolean variables associated with
the index bits is not required, and may not be ideal for some matrices. This order, howe\
leads to the following identification of the cofactors on the matlixwhen represented by
the functionf as an MTBDD:

< fav: fx—m)
leW leYl
where each submatrix is similarly decomposed.

Note that this ordering identifies each node in the MTBDD at l&febm the root with
a rectangular submatrix of siz&2%. This identity is critical, for the following reasons:

1. Significant savings in the MTBDD representation occur when nodes in the BDD ha
more than one parent; this corresponds to different cofactors in the Shannon tree mapj
on to identical functions. In matrix terms, this occurs when identical submatrices occ
in various parts of the original matrix. Since many of the special-case matrices that \
actually use (block matrices, sparse matrices, band matrices) have this property, |
gives some intuition to the idea that MTBDD's are a cogent form of these special-ca
matrices; and

2. Many matrix algorithms (LU decomposition, Strassen and standard matrix multiplic:
tion) are naturally phrased in terms of recursive-descent procedures on submatric
Since the submatrices map naturally onto cofactors of the BDD, the translation or
BDD procedures is direct.

In the sequel, we will demonstrate the effect of (1) quantitatively, and (2) by giving BDL
versions of efficient matrix procedures.

Notation: In the sequel, we will use superscripts to denote vertices on the BoolearBpace
and subscripts to denote individual variables. Hexicstands for an assignment of values
to the variablesxq, . . ., Xs, while x, refers to one such variable.

Remark For matricesA of size other than2x 2™, we use the standard trick [1] of
attaching an identify submatrix:

o)

For vectorsv of length other than? we attach a special elemeaptto represent missing
entries:

[ve]
3. Size of MTBDD's as a matrix representation

We can derive an upper bound on the size of an MTBDD by counting the number of paths
the data structure. Since each path involves at most legdes, whera is the dimension

MULTI-TERMINAL BINARY DECISION DIAGRAMS 153

of the matrix (number of rows for a vector, number of rows or number of columns for
matrix), and since each node must lie along some path, it follows that in the MTBDD wit
p paths, there are at mopiogn nodes.

This is a worst-case upper bound, and corresponds to the case where the MTBDL
simply the Shannon Tree; i.e., where the folding process has not resulted in any reduct
of the tree.

Lemma3.1. Let f:B" > R be any boolean vector function. Choose any elementr o
R. If there are k elements'x. . ., xX of B" such that {x') = r, then there are at most k
paths from the root of the MTBDD for f tor.

Proof: Induction omn. Forn = 0, trivial, since the only Boolean vector functions are the
constant functions oveR, and the MTBDD’s for these functions have a single node anc
no paths. Now suppose for a@ll< N, and consider some function froBl - R. Let the

left child of f be denotedf - and the right childf R. If there arek elementsc?, .. ., x¥ of

BN such thatf (x') =r, there are 0< | < k elements o8N~ such thatf(x') = r, and

k — | elements oBN—1 such thatf R(x') = r. By the inductive hypothesis, there are at
mostl paths fromf to the terminal, and at mosk — | paths fromf R to the terminar .
Since each path from the rootitas an extension of either a path from the right child or a
path from the left child, it follows that there are at mbst k — | = k paths from the root
tor. O

Lemma 3.2. In any MTBDD each non-terminal node must be on at least one path tc
each of two distinct terminal elements.

Proof: This is obvious from a casual inspection of any BDD. A particularly fastidious
reader can construct an induction, if desired. |

Theorem 3.1. The MTBDD representation of a matrix with total dimension n is of space
complexity @nlogn).

Proof: Since there are elements, there are at mastpaths through the MTBDD by
Lemma 3.1. Further, each path is of len@illogn). |

Theorem 3.2. The MTBDD representation of a matrix of dimension n and m nonzer
elements is of space complexityr@ogn).

Proof: ByLemma 3.1, there are at mastpaths terminating in a nonzero terminal in such
an MTBDD; since each path is of lengt(logn), there are at moD(mlogn) internal
nodes on these paths. Further, by Lemma 3.2, each internal node must be on a path to at
two terminals, i.e., on at least one path to a nonzero terminal. There aredtrasbg n)
nodes on these paths, and hence at gst log n) nodes in the MTBDD. a

Note that the standard sparse-matrix representation has at least one pointer per
and one pointer per column, as well as space complexity proportional to the number

154 FUJITA, MCGEER AND YANG

nonzero elements; this gives total space complexit@@h + n); note that ifm < -,

the worst-case complexity of the MTBDD respresentation is superior to that of the stand:
sparse-matrix representation. In fact, the following lemma is of interest.

Theorem 3.3. Let R be any representation of matrices of total dimension n with m nor
trivial entries m <« n. Then there exists at least one matrix M of total dimension n with n
nontrivial entries m <« n, such thaM|g = O(mlogn).

Proof: Given that there are possible positions in the matrix, amd total non-trivial
entries, it follows that even if each non-trivial entry is identical therg aUESUCh matrices.
Sincem « n, (r’;) ~ n™ over the domain of interest. Any representation validfobjects
must be of sizeéD(logk), hence the size of at least one matrix unBemust be at least
O(logn™) = O(mlogn). O

Note that this implies that MTBDD's are the optimal representation for very spars
matrices.

A similar, but much more complex and longer argument, demonstrates that for a mat
made up ofn constant blocks, total dimension the size is at mogb(mlogn).

4. Operations

Of course, no data structure is complete without a definition of the operations over it.
this section we describe a set of operations over MTBDD’s, with complexity results.

4.1. On hashing

Computations over BDD’s derive great efficiency from the idempotency of operations; tl
results of a BDD operation depend only upon the operands, not upon the context. A
result, modern BDD packages ensure that every BDD node represents a distinct funct
and memorizes the results of every operation, typically using a hash table. If the operat
is ever repeated, no computation is done: the result is directly returned. As a result,
operation is ever performed twice. This leads to complexity bounds in the case of termw
operations that are linear in the sizes of the operands.

We use hashing extensively in our matrix package; virtually every operation has its rest
remembered for later re-use.

4.2. Accessing and setting submatrices

In a matrix represented as an MTBDD, one accesses individual elements, column, r
and diagonal vectors, and submatrices using a single mechanism: partial evaluation.
evaluation—setting each variable—obtains an individual element. Settingcescfable
obtains a single row, and setting eachariable obtains a single column. Setting soxme
variables and somg variables obtains a submatrix.

MULTI-TERMINAL BINARY DECISION DIAGRAMS 155

Elements, rows, columns, and blocks are set using a similar scheme. Any submatri:
simply an MTBDD free of some variables: these variables are the indices of the submat
within the larger matrix. The set routine takes in three arguments: the matrix itself (he
denotedf), the submatrix to be insertéd) and a list of variables and values which indicate
where the submatrig is to be inserted irf . As with all MTBDD routines, underlying this
is the Shannon ExpansioBet is a recursive-descent procedure, which walks through the
MTBDD representing the matrix and creates the MTBDD with the appropriate submatrix
set tog.

At each level of the recursioset examines the top (most-significant) variable of each
of its three arguments. There are four cases.

1. top _var (list) > top _var (f). Return a BDD in which one cofactor is ti$et of
f with respect tag and the remainder dft , and the other is simply.

2. top _var (g) > top _var (f). Return a BDD whose cofactors are thet of f with
respect to the cofactors gf

3. x; =top _var (f) =top _var (g). In this case, the children df areSet recursively
appropriately with the children af.

4. x; =top _var (f) =top _var (list). In this case, the appropriate cofactor fofs
recursivelySet tog.

In the case where more than one of these cases apply, the identity of the top varia
determines the action. For example, if the top variable belongést to alone, case (1)
would apply even if case (3) applied as well.

The terminal case occurs whést is empty: in this casg is returned as the result.

It is easy to see that the cost®ét is bounded above b@(| f||g|); this is a gross upper
bound, and the expected cosglogn), wheren is the total dimension of .

4.3. Termwise operations

Many operations are performed termwise over the elements of a matrix: examples
matrix addition, matrix inner product, scalar multiplication, and (in the case of the binai
matrices) the Boolean operations. Briefly, a termwise operatiomer a matrix is any
operation such that, for any pair ofx m matricesM andM’, (M o M")ij = M;j o Mj;.

For termwise operations, we simply use Bryadply operator. This derives from the
following classic theorem:

Theorem 4.1. Let f, g be any vector Boolean functian g : B" — R, ¢ any termwise
operator h= f ¢ giff hy, == fy ¢ gy and hy == fx-© Ox;.

This theorem permits the use of Bryanfpply procedure, or Rudell's subsequent
improvements. In this codegwMTBDDs a procedure which takes as input a variable and
two MTBDD's, and returns an MTBDD indexed with the variable and whose left and righ
children are the two arguments.

In our BDD packagenewMTBDRIoes not simply create a new BDD, but, rather, keeps ¢
lookup table of existing BDD’s, and if one is found that matches the requested BDD, the ¢

156 FUJITA, MCGEER AND YANG

BDD is returned. In this manner there is exactly one BDD per function, which simplifie
greatly the lookup computations that permeate the matrix package.

Apply _Operator (f, g, Op) {
Results = hash _table ();
Return Apply (f, g, Op;
}
Apply (f, g, Op {
if ((Result = Lookup (f, g, Op, Results)) # NULD return Result ;

if (f is a terminal)
if (gis a terminal) Result =fop g ;
else

Result = newMTBDRg.var , Apply (f, g.left , Op),
Apply (f, g.right , OP);
elsif (g is a terminal)
Result = newMTBDDf .var , Apply (f .left , g, Op),
Apply (f .right , g, Op);
elsif (top variables of f and g are equal)
Result = newMTBDRf .var , Apply (f .left , g.left , Op),
Apply (f .right , g.right , Op));
elsif (top variable of f precedes top variable of g)
Result = newMTBDDf .var , Apply (f .left , g, Op),
Apply (f .right , g, Op);
else
Result = newMTBDRg.var , Apply (f, g.left , Op),
Apply (f, g.right , Op);
Store (Results , f, g, Op, Result);

Note immediately that there is at most one node in the resulting MTBDD for each call
this routine. The storage of results and their lookup ensure that there is at most one call
pair of nodes fromf andg. Hence ith = f ¢ gthen|h| < |f||g|. This of course recaps
Bryant's seminal theorem for two-terminal BDD's.

4.4, “Shadow” nodes

As mentioned above, MTBDD's themselves contain no hint of the dimensionality of th
represented matrix or vector; at best, from a raw MTBDD, one can deduce the size
the smallestrepresented matrix or vector(2wheren is the number of variables of the
MTBDD). However, each MTBDD represents adfinite number of matrices and vectors.
To see the problem, consider the MTBDD 1. This surely represents a constant matrix
vector. But that matrix might be the scalar 1, the 2-vector [1 1], the two-by-two matri
(1 i), or anyconstant matrix of size™elements (anyn > 0), of anydimensionality.

This difficulty arises even within well-defined MTBDD’s; consider, for example, the
matrix: (3). This is represented by the MTBDD pictured in figure 1.

MULTI-TERMINAL BINARY DECISION DIAGRAMS 157

Qx:l
/ O
1/0\

0

Figure L MTBDD illustrating paths of unequal length.

o
O

ool

-~
AN

=
o 1

Figure 2 MTBDD with a shadow node.

There are many possible methods of resolving this difficulty. One method uses t
variable associated with a node (the variable which labels its outgoing edges) to denote
“level” of the node; operations over the BDD keep track of the expected level, and note
discrepancy as the repetition of the BDD. The difficulty with this idea is that the resultin
code is fairly complicated and filled with bookkeeping.

A cleaner and more elegant solution ensures that every node is at a well-defined diste
from the root of the MTBDD; this is done by introducing, along edges that skip level
in the MTBDD, one node per level skipped. Both outgoing edges from these “shadov
nodes are directed to the appropriate successor node along the original edge. An exal
on our original MTBDD is given in figure 2. MTBDDs with these properties are called
Quasi-ReduceMTBDDs; the property of quasi-reduction was first defined by Sasao [11]
who applied it to BDD’s and a variant, Ternary Decision Diagrams (TDDs).

Add_Shadow_Nodes (B, i) {
if (B is a terminal) return
left <« B— left ; right <« B—right ;

158 FUJITA, MCGEER AND YANG

for (node < left , j < topvar (left) - 1; | > i; -)
node <« newMTBDDj , node, node);

B—left <« node;

Add_Shadow_Nodes (B—left , topvar (B—left));

for (node <« right , j < topvar (right) - 1;) > i; -)
node <« newMTBDDRj , node, node);

B—right <« node;

Add_Shadow_Nodes (B—right , topvar (B—right));

The procedure to add shadow nodes is quite straightforward, and is given above.

Though shadow nodes do add to the size of an MTBDD, they do not affect the complex
results derived above. Note that at m@iogn) shadow nodes are added to any edge in
any MTBDD; hence the size of any MTBDD can grow by (at most) a multiplicative factol
of O(logn). Even this grossly overstates the size of the size increase to an MTBDI
In order for an MTBDD to grow by a factor aD(logn), each path through the original
MTBDD (before the addition of shadow nodes) must be of ler@¢t); this can only hold
for constant matrices and vectors. Further, it is critical to note that the major results
paths and sizes assur¥logn) nodes on every path through an MTBDD. Hence, even
with the addition of shadow nodes, the maximum sizes of the MTBDD for sparse, den:
and permutation matrices are as given above.

4.5. Vector multiplication

Up until now, we have spoken only of thetal dimensiorof a matrix, without considering
its exact shape, or number of dimensions. For vector operations, of course, both the ¢
and the shape of the matrix is relevant in determining the result. Of course, the shape ¢
matrix represented by an MTBDD is arbitrary, and must be specified separately.

4.5.1. Multiplication of a vector by a vector. The result of vector multiplication is quite
straightforward. Given vectord, andg, both of lengthm, we have:

m—1
fog=)fig
i=0
When f, g are represented as Boolean functiohsy : B°9™! \» R, this is rewritten:

- Ox
thtal | 2] ®

and hence:

fog= frro0g+ fx, 00x, 4)

MULTI-TERMINAL BINARY DECISION DIAGRAMS 159

Equation (4) forms the basis of the recursion procedure:

Vector _Multiply (f, g) {
if (terminal cases) return (terminal _case (f, g));
Xi = top _var (f , 9);
Result = Vector _Multiply (fg, gx) + Vector _Multiply (fy, 0x)
Store (f, g, Result);
return Result ;

The termination conditions need some scrutiny. If bbthndg are terminals, the result
is not simply fg—consider the case where = g = 1 for everyi. The vectors are
represented by the constant function 1, but the resuitfir m-length vectors. The reason
for this disparity is that a constant terminal represents not a single entry, but rather a blc
of constant entries of the some size. Thus, wiieendg are both terminals, the result is
fgk wherek is the size of the block.

The size of the constant block represented by the terminal can be deduced during
computation. The size is the size of the partial vector. At the top level of the recursion tre
this size is 2", and is reduced by half with each recursive call; we can keep track of th
current size simply by passing the size iMector _Multiply as an integer argument.
The result follows.

Vector _Multiply (f, g, n) {
if ((Result = Lookup (f, g, n)) # NULD
return Result ;
if (f is a terminal)
Result = Multiply _Vector _by_Scalar (f, g, n);
elsif (g is a terminal)
Result = Multiply _Vector _by_Scalar (g, f, n);
else
X = top _var (f, @);
Result = Vector _Multiply (fg, gx, Nn—1
+ Vector _Multiply (fy, 0x, n—21)
Store (f, g , n, Result);
return Result ;
}
Multiply ~ _Vector _by_Scalar (f, g, n) {
if ((Result = Lookup (f, g, n)) # NULD
return Result ;
if (g is a terminal)
Result = f. valug¢ g. valueg 2";
else
Xi = top _var (g);
Result = Multiply _Vector _by_Scalar (f, gx—o, n-1)
+ Multiply _Vector _by_Scalar (f, gx=1, n-1);

160 FUJITA, MCGEER AND YANG

Store (f, g, n, Result);
return Result ;

We've broken the case where one of the two vectors is a scalar out for clarity, but th
can be treated together for the purposes of complexity analysis. The storage and retrit
of results implies that there is at most one multiplication for each tfipley, k), whereu
is a node off, v is a node ofy, andk is an integer between 0 anghence there are at most
O(| f|lg|n) multiplications. Further, there is at most one lookup on a triplev, n) per
unique pair Parent(u), Parent(v)); hence there are at mo6x(| f||g||n|) separate hash
table lookups. Hence the complexity of vector multiplicatio®ig f ||g|n|).

4.5.2. Multiplication of a matrix by a vector. The case of multiplying a matrix by a vector
is almost identical to that of multiplying a vector by a vector. In general, we have:

h(Xg, ..., Xm) = (X1, Y1, .-, Xm, Yn) © 9(Y1, - - -, Yn)

The use of the variableyy, . . ., ym) to index the rows off gives us the following picture

of f:
[fay fxm}
leW f><1)/1

and the following picture of matrix multiplication:

[hxl} _ [fay fxm} [%]
hX1 leW leYl Oy,
Hence:

hy: = fxvi o O + Fuyio Oy
hy, = fiay, © G + fxiya 0 Oy

This forms the basis of the recursion procedure. Again, the terminal cases must be caref
reviewed. We have the following:

1. f is a function ofx variables only. In this case, each row bfis a constant function,
and hence each positionlottan be found by multiplying the relevant constant function
of f by the sum of the entries @f. As a result, to obtaih we multiply each terminal
of f by the entries of.

2. gis ascalar functionf is a function of some variables and possibly sormevariables.

In this caseg is a constant function, but the rows dfare not constants; we reduce the
rows of f through the usual Shannon division.

In order to implement case (1) above, we need a routine which sums up vectors represe
as MTBDD's.

MULTI-TERMINAL BINARY DECISION DIAGRAMS

Sum Vector (g, n) {

if ((Result = Lookup (g, n)) # NULL
return Result ;
if (g is a terminal)
Result = g.value x* 2;
else
yi = top _var (g);
Result = Sum.Vector (gy, n-1)+ SumVector (gy, n-1);
Store (g, n, Result);
return Result ;

Multiply _Matrix _By_Vector (f, g, n) {

3

if ((Result = Lookup (f, g, n)) # NULD
return Result ;
if (f is independent of y variables)
Sum = Sum.Vector (g, n);
Result = Duplicate (f);
foreach terminal R of Result
R.value = R.value * Sum;
elsif (g is a terminal)
Result = Multiply _Matrix _by_Scalar (f, g, n);
elsif top _var (f) > top _var (Q)
yi = top _var (f);

161

With this in hand, we can easily write the routine to multiply a matrix by a vector:

Result = newMTBDDX; , Multiply _Matrix _By_Vector (fg, g, n),

Multiply ~ _Matrix _By_Vector (fy,, g, n))
else
y, = top _var (@);
Left = Multiply _Matrix _By_Vector (fy, gy, n-1);
Right = Multiply _Matrix _By_Vector (fy, gy, n-1);
Result = Apply _Operator (Left , Right , PLUS;
Store (f, g, n, Result);
return Result ;

Multiply _Matrix _by_Scalar (f, g, n) {

if ((Result = Lookup (f, g, n)) # NULD
return Result ;
if (f is independent of y variables)
Sum = g.value * 2";
Result = Duplicate (f);
foreach terminal R of Result
R.value = R.value * Sum;

162 FUJITA, MCGEER AND YANG

else
y; = top _var (f);
Result = newMTBDDx;, Multiply _Matrix _by_Scalar (fy, g,
n-1),
Multiply ~ _Vector _by_Scalar (fy, g, n-1));
Store (f, g, n, Result);
return Result ;
}

4.5.3. Multiplying a matrix by amatrix. Consider the problem of finding a matrix product:
h = fg, wheref andg are matrices. By now the recursion is familiar to the reader:

hwz hx, _ sy Txy || 9z Oy
hxi hxz fxy fxy gyZ 1:yz
Once again the recursion suggested is the straightforward one given by the equatic
and once again it is easy to see that an integsrrequired to keep track of the sizes of the

constant blocks. In the case of the matrix multiplication, the recursion is somewhat simp
due to the symmetry of the operands:

Matrix _Multiply (f,g,n,i) {

if (Result = lookup (f,g,n,i, MULT)) return Result ;

if (f and g are both constants) return fg2";

Qi1 = Apply (Matrix _Multiply (fgy, Oyz,i +1,n—1),
Matrix _Multiply (fgy, OQyz,i +1,n—1), ADD;

Q2 = Apply (Matrix _Multiply (fgy, Oyz, i +1,n—1),
Matrix _Multiply (fgy, Oyz.i +1,n—1), ADD;

Qs = Apply (Matrix _Multiply (fyy, Oz, i +1,n—1),
Matrix _Multiply (fxy,Gyz,i +1,n—1), ADD;

Qs = Apply (Matrix _Multiply (fyy, Oy, i +1,n—=1),
Matrix _Multiply — (fxy, Oyz,i +1,n—1), ADD;

R1 = newMTBDDz, Q;, Q2);

R2 = newMTBDRz, Qz, Q4);

Result = newMTBDD(x;, R1, R2);

Store (f, g, n, i, MULT, Result);

return Result ;

The variable in this case is used to track which set of variables is being used at th
level of recursion. For clarity, here we have used the natural order of the variables, &
have interleaved the, y, andz variables.

This routine can be improved by using the Strassen [12] products at each level of
recursion, rather than the simple, naive block method outlined here. The applicabil
of the Strassen procedure is evident, since Strassen’s method is a simple variant of
divide-and-conquer approach outlined above.

MULTI-TERMINAL BINARY DECISION DIAGRAMS 163

5. Permutation matrices

An interesting class of matrix well worth study is thermutation matrix A permutation
matrix is simply a square binary matrix with precisely one one in each row and one one
each column; its effect, when applied to a vector, is to permute the elements of the vect

Permutation matrices arise most often in LU decomposition and Gaussian eliminatic
The most common representation is as a vevt@f lengthn, whereVi_; iff B; = 1.
Such a representation is easily seen to be of Gigelogn); since there ara! permutation
matrices, this is optimal.

A simple consequence of the sparse matrix theorem is that the space complexity of
MTBDD representation of a permutation matrix is alBgnlogn). This is not the most
interesting measure, however. A more precise estimate is found foxam permutation
matrix which permutes onllg elements.

Itis easy to see that there must(De(E)(k! — 25-1y) such matrices, and hence any repre-
sentation must be of siz®(k logn). The most obvious efficient representation—a linked
list of k elements, where th@, j) coordinate of each permuted elementis stored—is plainly
O(klogn), i.e., optimal. Our purpose here is to investigate the MTBDD representation.

First, note that thé elements off the main diagonal form a Boolean function viith
minterms: hence there are at mkgiaths through its BDD to the one terminal, and hence
its size is at mosO (k logn), optimal.

The measure given above requires some computational complexity when the permuta
matrix is used, however, both in the MTBDD and in the linked-list case. Thus, it is ofte
desired to represent the unmoved elements. It is interesting to note that when very |
elements are moved, the MTBDD representation under the natural order is in fact sma
than theO(nlogn) representation generally thought necessary.

A permutation matrix that moves exackyelements has preciselyone elements off the
main diagonal. Such a matrix can be written:

P=I,eM

wherel, is then x nidentity matrix,® is the termwis@xclusive -or operation (addition
modulo 2) andM is a matrix defined as follows:

Ry T#]
M"J_{Pl,j =]

Note thatM has X one elements. By the sparse matrix theorem, thereMreés of size
O(klogn). SinceP = I, @ M, by Bryant’s TheoremiP| < |I,||M|. By construction],
is of sizeO(logn), and hence we conclude thatis of size amost Qk log? n). Note that
this is smaller thar®(nlogn) whenk < n/logn.

5.1. Construction of permutation matrices

A permutation matrix is constructed precisely in the manner given in the proof abov
specifically, the “deviation'M of the permutation matrix from the identity is constructed,;
the result is then exclusive-or'd to the identity matrix.

164 FUJITA, MCGEER AND YANG

The deviation matrix is easy to form; it is easy to see thiatdfements are permuted, it
is equivalent to a logic function ofiminterms.

6. L/Udecomposition

L/U Decomposition on MTBDD's is a fascinating topic. It is trivial to implement the
standard Gaussian-elimination-with-pivoting algorithm. It is worth noting, however, that
is easy to maintain the maximum element of an MTBDD with the root node, and compu
it dynamically inO(1) time. Since this is the case, it is easy to find the maximal elemer
inan MTBDD in O(1) time. This implies immediately that complete pivoting—where the
largest element of a matrix is chosen as the pivot, not merely the largest element on
diagonal—is as easy as partial pivoting on an MTBDD. This is important, for complet
pivoting is numerically more desirable than partial pivoting, but is avoided with standat
packages due to the expense of searching the entire matrix for the pivots.

While the standard Gaussian-elimination algorithm is easily implemented, we can in fe
do somewhat better. The optimal L/U factorization algorithm is found in [1], and is base
on a recursive-descent paradigm. This suggests that the optimal algorithm may map ni
onto the MTBDD structure. Infact, this the case, as we show in the remainder of this secti

6.1. Recursive-descent LUP factorization

The classic recursive-descent LUP factorization algorithm is taken from [1] and adapted
MTBDD’s. We give the algorithm here, and discuss its adaptation below.

/ = ProcedureFactor (A, m, p) returns L,U, P such that

L is lower-triangular m x m,U is upper triangular mx p,
and P is a px p permutation matrix such that A=LUP,
where A is an mx p matrix of rank m */

Factor (A, m, p)

1. if m==1

2. L =[1];

3. c is any column containing a nonzero element of A

4, P =permute (1, ¢);

5. U=AP;

6. return L,U, P;

7. Yelse {

8. Bis the top m/2 rows of A;

9. Cis the bottom m/2 rows of A;

10. (L1, U, Py) =Factor (B,m/2, p);

11. D=CP%;/* Hence DP,=C «/

12. E is the leftmost m/2 columns of U; /* E is
upper-triangular , m/2xm/2 */

13. F is the leftmost m/2 columns of D;

14. G=D-FEU,

MULTI-TERMINAL BINARY DECISION DIAGRAMS 165

/ *Notesince Eissquare and upper triangular , E isinvertible
Also note that since U; =[E | K],where Kisan m/2x (p—m/2)
matrix , E7'U; =[lmz| E7'K], and so FE~!U; =[F|FE K]
Since D =[F|Ky,G=[0|Ky—FE K] #/

15. (Lo, Uy, P,) = FACTORK; — FE~'K, m/2, p —m/2)
| w2 O

6 el 2]

17. H=UP;*
[o :

18. L_[FE_1 Lz]/*Lls m x m */
19 U= H [* U is mxp */
' =0 u, P

20. P=PP;
21. return (L,U, P)
}

The initial call isFactor (A, n, n); note, as above, that we may assume that 2',
for some integer > 0.

It is easy to see that since the initralis a power of 2, so is each subsequenfurther,
cutting the matrix in half horizontally simply corresponds to evaluating any unevaluate
row variable; for convenience, the top row variable will be chosen. Hence the initial sp
of matrix A into matrix B andC simply corresponds to taking two cofactors/f

The only central difficulty with translation to an MTBDD form is the problem of cutting
off the leftmostm/2 columns ofG in the recursive call ttFACTORoN line 15; sincep is
not cut on the way down in the same manner thas, even ifp is a power of 2 at some
level it is not assured thgt — m/2 is: consider 16- 4 = 12. Hence splitting the matrix
vertically is not a matter of a simple evaluation. However, note we do not actually nee
to split the matrix; examination of the Aho-Hopcroft-Ullman algorithm reveals that ever
matrix actually factored int@L 1, U;) is a square matrix of sizem/2. Further, if these
matrices are actually plotted on the original mat#ixit is seen that these square matrices
are of size a power of 2, straddling the main diagonal of mahrix

This picture gives a useful alternative notion of the Aho-Hopcroft-Ullman algorithm, an
relates it to the classic iterative procedure for LU decomposition.

Consider the classic iterative algorithm:

LU_Decomp(A){
n < [A; U<« A; L« Ip;
for i < 0; i<n; +4+1)
pivot the maximal element of Ui..ni..n into Ui;
for (j<i4+1;j<n;+4+j)
Lji < Uji/Uii;
Uji <—O;
for (k<i+1; k<n; ++k)
Ujk < Ujk — Uji /Ui ;

166 FUJITA, MCGEER AND YANG

Conceptually, on theth iteration, theéth column ofU is turned to 0 from + 1 ton, and
the multiplicands necessary to do that are stored in the elerhgnf®ri < j < n.
Now, the principle of the iterative algorithm is easily generalized to recursive descent

(Aoo A01> _ (Loo 0) <Uoo U01>
Ao Anr Lo Lu1 0 Un
whereUgo, Uy1 are upper triangulat, oo, L11 are lower triangular, and;o, Up; are general

matrices.
2 x 2 Gaussian Elimination solves far, U:

Ago = LooUgo
Ag1 = LooUoz
Ao = L1oUgo

A11 = L1gUp1 + L11U11

These equations are easily solved: one first recursively fadtgligito L og andUgq, then
solves:

Uo1 = Lgg Aoz
Lio = AtoUgg

and then recursively factors;; — L19Uo; to obtainL ;3 andUy;.
Analysis of this naive algorithm gives:

S() = 25(n/2) + 2T (n/2) + 2M(n/2)

whereT (n) is the time to factor am x n matrix, as before, antl (n) is time to multiply
two n x n matrices. Noting that (n) < cM(n), we obtain:

S(n) = 28(n/2) + M (n/2)

and it is easy to see th&n) < c,M(n) for some constart,.
Returning to the iterative procedure, the middle loop conceptually consists of three ste

1. Computation of the multiplicand;
2. “Zeroing” the appropriate element of, and
3. Computation of the row df

The great insight of the AHU recursive-descent procedure was the recognition that 1
multiplicand need not simply b8;; /U;i, but could in fact beF E-1, whereE was an

m x m submatrix centred about the diagonal @dvas am x m matrix directly below

E. The computation of the new row tf—the innermost loop of the iterative algorithm—
becomes the computation of therows ofU including them x m submatrixF (note that

F is zeroed in a manner precisely analogoud foin the standard algorithm).

MULTI-TERMINAL BINARY DECISION DIAGRAMS 167

The point, then to note is that the AHU algorithm is in fact quite similar to the iterative
algorithm; a pivot is selected, and then moved to the main diagonal; the elementimmediat
below the multiplicand is zeroed. This implies that timex p matrix A is in fact the
rightmostp columns of arm x n matrix [0 A]; conceptually, we may as easily deal with
this supermatrix.

This picture of the AHU algorithm permits us to note the following fact: the mdrix
for every call of the algorithm, is a square matrix of sizex22%,0 < k < n. Further,

E consists of the submatrid;; - - - Ui 2x_1 i1 Of the final upper triangular matriy,

for somei = c2¥*1, SinceE is such a matrix, it represents a cofactor of the final upper-
triangular matrixJ with the variables,_x, yn—« setto O, the variables;, y; set arbitrarily

for 0 < j < k and the variableg,_;i, y,_i not set for 1< i < k. It must therefore follow
that F is found as a cofactor df;, by setting all thex andy values up ta — k as forE,
settingx,_x = 1, ¥n_x = 0 and not settingt,_i, yn_i fori < k.

This observation permits us to consider a minor variant of the AHU algoritaotor
(A, 2™, 2", p, k) factors a 2' x 2" matrix Awhose leftmost2— p columns are identically
0 into factorsL, U, P such that:

1. Lis 2™ x 2™ lower-triangular

2. Uisa2" x 2" matrix, [0 V], whereQis 2 x 2" — pandV is 2" x p, upper-triangular

3. Pisa2 x 2" permutation matrix of the formi"-» 2 7;i.e., P does not permute the
first 2" — p columns of A

4, A=LUP

In other words, we simply modify the AHU algorithm to retat the columns ofA,
throughoutthe recursion; the fact that this procedure returns the result of the AHU proced
is to note that ifs the AHU procedure in the case whepe= 2".

The only significant modification to the AHU procedure is in lines 12—13 (which becom
13-14), whereE and F are computed.E andF are now not the leftmost™?! columns
of U; andD, but are a selection of columns with indicés2p---2"+ 2™ — (p+ 1); as
mentioned in the foregoing, these are selected by a an appropriate setting of the varial
X0y« 5 Xn—(m+1), Yo, - - - » Yn—m+1)- Note that the variables;, y; are set before entry for
0<j<n—(@m+1).

This observation lets us adapt the AHU algorithm with only a little simple bookeeping
namely passing the values already set into FACTOR as a separate argument, which
denote here aS.

| * ProcedureFactor (A, m,n, S k) returns L,U, P such that

L is lower-triangular 2Mx 2™ U is 2Mx 2"

of the form of (2) above ,

and P is a 2" x 2" permutation matrix such that A=LUP,
where A is an 2™ x 2" matrix of rank 2M %/

Factor (A, m,n, S, k)

1. if m==0 {

2. L =[1];

3. c is any column containing a nonzero element of A

168 FUJITA, MCGEER AND YANG

4 d is the column selected by S
5. P = permute(d , c) ;
6. U=AP;
7 return L,U, P;
8. lelse {
9. B < Alx=o;
10. C « A|xk:l§
11. (L1,Uq, P1) = Factor (B,m—1,n, S{J{w =0, =0}, k+1);
12. D=CP*;/* Hence DP; = C «/
13. E <« Uilsy=0 / * Eis upper-triangular , 2M1 x 2m=1 «/
14. F < Dlsyiy=o
15. G=D-FE'U,
/ * Note since E is square and upper triangular , E is
invertible
Also note that since U;=[0 E K]

E-W;=[0 Im: E-'K],and so FE-IU;=[0 F FE K]
Since D=[0 F Ki],G=[0 0 Ky— FE!K] %/

16. (L2, Uz, P,) =FACTORG, m—1,n, S|U{wk =1, x =1}, k+ 1);
17. H=UP*!
18. L=((W=0A((%=0AL)V((x=DAFE™D))V((¥k=DAX=1AL)
19. U=(X=0AH)V(X=DA(k=21 AUy
20. P=P,P
21. return (L,U, P)
}

The initial call isFactor (A, n,n, @, 0).

Note that the assembly operations in the lines 18-19 are Boolean operations; th
conform exactly to the matrix operations given in the original version of the AHU procedur
when the matrix is considered as a function from the Boolean space of index variables o
the range of the matrix. Note also that the permutation ma¥ikas disappeared from
this variant of the algorithm; this is because, it is now unnecessary to construct lar
permutation matrices from smaller ones: all permutation matrices generated at every st
of this algorithm are 2 x 2", rendering the reconstruction operations superfluous.

As with all the other MTBDD operationd,U P factorization is idempotent, and hence
the results of any call can be stored and retrieved for a subsequent call. Note that not c
the matrixA, represented as an MTBDD, but also the parametesadn must be used as
a hash key, to resolve the dimensionality issues given above.

7. Conclusion

In the foregoing, we have demonstrated that MTBDD’s are efficient representations
matrices. We have demonstrated that MTBDD's are the space-optimal representatior
both dense and sparse matrices, and of permutation matrices. Further, we have demonst
that the optimal time-complexity algorithms for the basic suite of matrix operations transla

MULTI-TERMINAL BINARY DECISION DIAGRAMS 169

directly and elegantly onto the MTBDD structure, without any reduction in the asymptot
efficiency of the algorithms.

Acknowledgments

This Research sponsored by Fujitsu Research.

References

10.

11.

12.
13.

14.

. A. Aho, J. Hopcroft, and J. Ullmari,he Design and Analysis of Computer AlgorithrAsidision-Wesley,
1974.

. S.B. Akers, “On a theory of boolean functiond,"SIAM 1959.

. R.E. Bryant, “Graph-based algorithms for boolean function manipulatiRFE Transactions on Computers
1986.

. E.M. Clarke, M. Fuijita, K. McMillan, J. Yang, and X. Zhao, “Spectral transforms for large boolean function:
with applications to technology mapping,” Design Automation Conferenct993.

. E.M. Clarke, M. Fuijita, K. McMillan, J. Yang, and X. Zhao, “Spectral transforms for large boolean function:
with applications to technology mapping,” This Issue, 1996.

. O. Coudert and J.C. Madre, “A unified framework for the formal verification of sequential circuit&Eia

International Conference on Computer-Aided Desit@00.

. O. Coudertand J.-C. Madre, “A new implicit graph-based prime and essential prime computation techniqt

in New Trends in Logic Synthesis and OptimizatibrSasao (Ed.), Kluwer Academic Publishers, 1992.

. O. Coudert, J.C. Madre, and H. Fraisse, “A hew viewpoint on two-level minimizatioBggign Automation

Conference1993.

. S. Malik, A. Wang, R.K. Brayton, and A.L. Sangiovanni-Vincentelli, “Logic verification using binary decision

diagrams in a logic synthesis environment,lEEE International Conference on Computer-Aided Design
1988.

Y. Matsunaga, P.C. McGeer, and R.K. Brayton, “On computing the transitive closure of a state transiti
relation,” inDesign Automation ConferencE993.

Tsutomu Sasao, “Ternary decision diagrams and their applicationbyteéimational Workshop on Logic
Synthesis1993.

V. Strassen, “Gaussian elimination is not optimiijmer. Math 13, 1969.

G.M. Swamy, R.K. Brayton, and P.C. McGeer, “A fully implicit quine-mccluskey procedure using bdds,
Technical Report UCB/ERL M92/127, Electronics Research Lab, University of California at Berkeley, 199:
H. Touati, H. Savoj, B. Lin, R.K. Brayton, and A. Sangiovanni-Vincentelli, “Implicit state enumeration of
finite state machines using bdd’s,"liIBEE International Conference on Computer-Aided Desifi90.

