
THE EQUIVALENCE PROBLEM FOR REGULAR EXPRESSIONS WITH

SQUARIR; REQUIRES EXPONENTIAL SPACE t

A.R. Meyer and L.J. Stockmeyer

Massachusetts Institute of Technology

Cambridge, Massachusetts

I. Introduction A regular expression with squaring may use the

Any procedure for determining equivalence of
regular expressions with squaring can be used to decide
RSQ, so that this lower bound also applies to the
equivalence' problem.

Theorem 2.1: There is a finite set L such that if ~ is
any machine which recognizes RSQ(~), then there is a
constant c > 1 such, that ~ requires space (and hence

time) c n on s orne input of length n for infinitely many
n.

The method of proof will be to efficiently reduce
the recognition of any language accepted by some Sen)

2
n

space bounded machine to the recognition of RSQ(~)
for some~. The notion of efficient reduction is the
following.

Definition: Let L
l
~ ~1*' L

2
~ r

2
* be two languages.

We say that L1 ~p~ L 2 (L
l

is polynomial time linear

space reducible to L2) if there is a polynomial pen), a

constant c > 0, and a machine ~ which, when started with

any x E ~~ on its tape, halts with some y E ~; on its

tape such that

There has been considerable interest recently in
finding "natural" problems whose solutions require more
than polynomial time. From the work of Hartmanis and

Stearns 1 we know that given any arbitrarily large time
bound T(n), there is a language recognition problem
which requires time T(n) on some input of length n for
all sufficiently large n. However, the diagona1ization
argument used to construct the language gives no in
sight into properties that the language possesses. In
the first part of this paper we shall show that the
problem of determining if two regular expressions
describe the same set of strings requires exponential
space (and h~nce exponential time) provided that the
regular expressions can use a squaring abbreviation

(S2 = S-S).

Closely related to the problem of finding non
polynomial time languages is the question of whether
or not nondeterministic polynomial time Turing machines
can recognize a larger class of languages than deter
ministic polynomial time machines. The nondetermin
istic machine can be thought of as doing polynomial
bounded quantification over deterministic polynomial
time computable relations. In the second part of the
paper we describe and give some simple properties of a
"hierarchy" of languages. Each succeeding class of
the hierarchy is obtained by allowing polynomial bound
ed quantification over relations in preceeding classes.

II. A Language Which Requires Exponential Time

usual operations U,
ation S2 = S.S.

, as well as the squaring oper-

For what follows, it will be useful to have a means
of describing the computation of a space bounded Turing
machine. Suppose Turing machine ~ (possibly nondeter
ministic) accepts some language L ~ (0,1}* within space
Sen) ~ n, has states Q and tape symbols T. Let bET
denote the blank tape symbol.

The following simple fact relates the complexity
of L

1
to the complexity of L

2
.

Fact 1: If L
l
~p~ L2 and if,L2 is accepted by some

time T(n) and space Sen) machine, then L
l

is accepted

by some time pen) + T(cn) and space cn + S(cn) machine
for some polynomial p and constant c.

The main goal of this section is to establish an
exponential lower time bound for a certain language
recognition problem. We will assume that the language
recognition is being done by a one-tape one-head deter
ministic Turing machine (henceforth in this section
called a machine) which, when started with an input x
on its tape, eventually enters a designated accepting
state if and only if x is in the language. Time and
space bounds will be given as a function of n, the
length of the input string. In the realm of exponen
tial times, the one-tape one-head model is not restric
tive since it can simulate multi-tape or random access
models in time which is at most the square of the time
required by the more powerful model.

The first language to be considered is the follow-
ing.

2) ~ carries out its computations within time pen)
and space cn (and hence lyJ ~ cn).

Definition: Let ~ be a finite set. Define RSQ(~) =
(regular expressions with squaring EIL(E) * ~*} where
L(E) denotes the language defined by the regular
expression.

tWork reported herein was supported by Project MAC, an
M.I.T. research program sponsored by the Advanced
Research Projects Agency, Department of Defense, under
Office of Naval Research Contract Number N00014-70-A
0362-0001. Reproduction in whole or in part is per
mitted for any purpose of the United States Government.

Definition: An instantaneous description (i.d.) of ~
is a string in (T U (QXT)* which contains exactly one
symbol in QXT. Given any i.d. r = ye(q,t)ez for y,
z E T*, the set of possible next i.d. 's Nex~ (r) is

defined in the obvious way from the transition of rules
of!J.R. For example, if when !In is in state q scanning
symbol t, ~ can enter state q', write symbol t', and
shift its head right, then

yet'e(q',u)ew E Nex~ (r)

125

where z = uw, u E T. Nex~ (r) is empty if (q,t) is a

halting condition. Let # ~ T U (QXT) , The set of
accepting computations ~ (x) of ~ on input x E (0,1}n
is all sequences of i.d. s

such that

where N(crl,a ,cr
3

) ~ ~ is the set of symbols that could
2 . th

legally occupy the j symbol of Nex~ (r) given that

the j-l, j, and j+lth symbols of rare cr
l

, a
2

, and a
3

respectively, Also N(al , #, a3) (#} VOl' a3 E ~.

Set difference has been used above only to simplify
the descriptions of certain sets whose size is indepen
dent of n.

where x = xl ... xn' x j .E (0 , I), j = 1, ••. , nand qo is

a starting state of ~.

3) i. d. j +1 E Nex~ (i. d. j) "'if j ~ l"

4) i.d'
k

contains the accepting state qa.

1)

2)

Each i.d. is of length Sen)

S(n)-n
i.d· l = (qo' xl) x2 ..• xn b

These expressions are 'seen to be of length cn for
some c once it is noted that for any k ~ 1 there is a
regular expression with squaring of length d log k

which describes ~. for some constant d.

E is the union of the expression 1), 2), 3), The
reader may verify that a Turing machine can carry out
the construction in polynomial time and linear space.

o

Lemma 2.2: For any finite b,

RSQ(E) $;pt RSQ«(O, 1})"

A simple coding can be used to show that Theorem
2.1 applies to smaller alphabets.

o

implies that. f S(cn) + cn °1ur >
ll"tOO 2n

Sen) ~ dn for some constant d > 1 and all n which
are multiples of c.

Note that Theorem 2.1 can easily be strengthened
by filling in the gaps between multiples of c, thus
replacing the "infinitely many nIt condition by an "all
sufficiently large nIt condition.

Sl (n)
~ -- = 0 and S2(n) ~ log n.

S2(n)
.,'(

Then there is a language L ~ (0,1) accepted by some
space S2(n) machine but by no space Sl(n) machine.

Proof of Theorem 2.1: Let L be as in Fact 2 with

S2(n) = 2
n

. Let ~ be such that L ~p~ RSQ(~.

If RSQ(!;) is accepted by some space Sen) machine,
then L is accepted by some space S(cn) + cn machine
for some constant c.

*Proof: Let L = (aI' "" Ok} and let h: ~ ~ (O,l} be
i-Ithe uniquely decodable code h(a

i
) = 1 0, i = 1, ... ,

k. Let C = h(~) be the set of code words. An expres-

Now we use the following fact to find a language

which requires space 2n for all sufficiently large n.

Fact 22: Let Sl(n), S2(n) be tape constructable

functions such that

1) Strings which don't begin with

2n_n
#(qo' xl) x2 ••• xn b #:

.,'(
If x ~ L then L(E) = ~ •

If x E L then L(E) = ~* - Sm(X) ,

L(E) will ha ve the above property if 1.(E) contains
the following sets of strings.

1) «'Lr=ll=) U =11= • «D-(qo'x l » U xl - «!'~x2~(U

x2 - «'Lrx3) U .•• • (E-xn») •••)- ~

U ~l • b* - (D-b-#) • r,*

(~ U ~)2n_l *u=II=· ~ I'" -I-/',

U =11= • tn. (rr#) • !;oJ(

2) Strings which don't contain the accepting
state qa.

3) Strings which aren't of the form

~ i.del =11= i.d: 2 #= ••• #= i.d e k #=

with i.d. '+1 E Nex~ (i.d. ,) "'if. ~ 1.
. J J J

These sets of strings can be described by the
expressions

We now show that a regular expression can, in a
sense, simulate a space bounded computation.

*Lemma 2.1: Let L ~ (0,1) be any language accepted by

a space Sen) = 2n bounded (in general nondeterministic)
Turing machine~. Then there is a finite set ~ such
that L ~p~ RSQ(~.

Proof: Let E = (#} U T U QXT where Q and T are as
above. Given x = xl •. ' xn ' we will construct a reg-

ular expression with squaring E of length cn for some
constant c.

where /\ denotes the empty string.

2)

3)

(I; - (U
tET

.,'(

(qa' t»)

.,'(-I..
sion for (O,l} - C is

.,'(k *
(0 U 1) • 1 • (0 U 1) .

Given any regular expression with squaring E over
r;, form the expression

* k *E' = h(E) U (0 U 1) • 1 • (0 U 1)

over {O,l}, where heEl is the expression obtained from

126

o

E by replacing each occurrence in E of a symbol in ~

* *by its code word. Now L(E) = ~ ~ L(E') = (O,l}

Corollary 2.1: The statement of Theorem 2.1 is true
with ~ = (O,1}.

The next objective will be to get some rough upper
bounds on the complexity of RSQ(~).

Conclusion: The general method of obtaining the lower
bounds described in this section is to efficiently
reduce the computation of any member of a general class
of computation to a particular computation. A lower
bound on the particular computation can then be obtain
ed if there is a diagonalization (or other) argument
which states that some members of the general class
possess a certain complexity. It is expected that this
method will find other uses than the ones described
here.

Definition: Let REG(~) denote the set of all standard
regular expressions which do not describe !i~

Such a time-space relation would also allow one to
establish a greater than polynomial time bound for the
following simpler language.

Theorem 2.2: For any finite ~, RSQ(~) can be recog

nized in nondeterministic space cn and hence determin-
.. (2)n d dn
~st~c space c an time d for some c > 1, d > 1.

Definition: Given a set of languages S and a transi
tive relation ~ on S, a particular language L is
complete in S with respect to ~ if

1) L F S

2) L' E S ~ L' ~ L.

Cook 5 and Karp 6 have studied the class NP and
have exhibited a variety of combinatorial problems
which are complete in NP with respect to the reduci
bility ~ defined as follows.

p

Definition: Given languages Ll , L2 , we say L
l
~p L

2
if Ll is accepted by some deterministic polynomial time

machine ~with an L2 oracle. The L
2

oracle can, in a

single step of~, determine whether or not y E L
2

where y is some string written on ~'s tape.

We were first led to extend the class NP by con
sidering the language MINIMAL which denotes the set of
well-formed Boolean expressions for which there is no
shorter equivalent expression. We do not know if
either MINIMAL or its complement are in NP. However
it is clear that -MINIMAL can be recognized by a
polynomial time nondeterministic machine with an
oracle for determining equivalence (or non-equivalence)
of Boolean expressions. This latter non-equivalence
problem is in NP. The method of obtaining the second
class containing I MINIMAL can be repeated to obtain a
"hierarchy" of languages. The following relation is
useful.

III. A Hierarchy of Languages

Related to the question of existence of natural
non-polynomial time languages is the question of
whether or not NP = P where the classes NP, Pare
defined as

NP(P) = (languages accepted by some nondeterministic
(deterministic) polynomial time Turing machine}

One application so far is a proof that the weak
monadic second order theory of successor and several
other decidable theories to which it can be efficiently
reduced are not elementary-recursive 4

This definition is due to Cook. Karp uses a
stronger form of reducibility in which the oracle is
called only once as the last step of the computation
of~. The result of their work is that either all or
none of the complete problems are recognizable in

.deterministic polynomial time.

o

o

Let L ~ (O,1} be any context sensitive
Then L ~p1 REG«(O,1}).

Proof: The proof is very similar to that of Lemma 2.1.

The only difference is that an expression for ~ now is
of length dk. But since the machine being simulated
uses only space n, the length of the simulating regular
expression is still only cn.

Lemma 2.3:
language.

Proposition 2.1: The time bound of Theorem 2.1 can be

dn
raised to d for.some d > 1 provided that there is a
constant k > ° such that any time T(n) machine can be

simulated by a space (log T(n))k machine.

Therefore, the space bound of Theorem 2.1 is good
to within the base of the exponential but the time
bound isn't. What is needed is a stronger relation
between the space and time complexities of a computa
tion. Such a relation would be provided by a proposed

result of Shamir 3 which states that a time T(n)
machine can be simulated by a space (log T(n))2 machine.
Such a relation would imply that the language L used in

the proof of Theorem 2.1 requires time dd
U

for some
d > 1 and all sufficiently large n.

Proof: Given a regular expression with squaring of
length n, first eliminate the squaring abbreviations
obtaining a standard regular expression E of length at

most 2n • From this expression, construct a description
of a nondeterministic finite state machine ~which

accepts L(E). The length of this description is at

most cn for some c > 1. The "state" of !In after some
input has been read is the subset of states ~ could be
in depending on what nondeterministic choices it made
while reading the input. Any such subset can be

stored in space c
n

. Starting with the subset consis
ting of all starting states, symbols from ~ are non
deterministically chosen and the subset "state" up
dated accordingly after each choice. The original
regular expression is accepted if ~ ever enters a sub
set "state" which contains no final state.

11k
Proposition 2.2: A cn lower time bound holds for
REG«(O,1}) provided that a time-space relation as in
Proposition 2.1 holds.

Definition: For languages L
l

, L2 , we say L
l

R
n

L
2

if

L
l

is accepted by some nondeterministic polynomial time

machine with oracle language L
2

.

We have not used a reducibility notation for this
relation because it is not clear that it is transitive.
The classes of the polynomial hierarchy are defined as
follows.

Lemma 3.2: If L E~ U rr~ for any k ~ 0, then there is

a polynomial p(n) such that L is recognized by some
deterministic space p(n) machine.

Definition: ~
rrP /).p = ¢.

0 0

~+1 (L L R L' for some L' E ~}n

p (L -,L R L' for some L' E ~~}II i +1 n l

p
(L L ~ L' for some L' E ~}~i+l P

Proof: The proof follows easily by induction on k.

Theorem 3.1: If L E re U TI~ for any k ~ 0,

then L ~ REG«(O,l}).
p

Proof: Let p(n) be as in the previous Lemma. As in
Lemma 2.3, given x of length n, construct a regular
expression E of length c·p(n), for some constant c,
such that

We conclude this section by exhibiting a complete
language at each stage of the hierarchy.

In particular, Bl = (satisfiable formulas}.

Theorem 3.2: For any k ~ 1,

Definition: For k = 1, 2, ..• define

Bk = (A(X
l

, x2' .•. , X
k) ! A is a well-formed Boolean

expression of the 0-1 valued variables

o

*L(E) * (0,1} ~ x E L.

Bk E re.
I, E rl' U rr

k
P ~ L ~ B

k
•

~ P

1)

2)

The construction requires at most polynomial time.

We will give here only the proof of the k = 2 case.
The general case follows easily by induction using
essentially no new ideas. The proof is very similar to
Cook's proof of the k = 1 case and it is assumed that
the reader has some familiarity with that proof.

5
The case k 1 was proven by Cook. We do not

claim that the languages B
k

are natural problems.

However they may provide a useful intermediate step in
exhibiting natural problems which are complete in some
class above NP, just as Cook's proof of the case k =1
provided a handle on the class NP.

for all i = 0, 1, 2, ...
In particular ~ = NP and /).i = P.

The obvious inclusion properties are

1) f:j~ ~ If n TI~ , i ~ 0
l l l

2) 'if u rr~ ~ /).~+1 i ~ O.
l l l

Lemma 3.1: For any k ~ 1, if re u rr~ = /).~, then!f =

rrP ~kP for all i ~ k. In particular, if NP = P, then
i

~~ TI~ = P for all i > o.
l l

Proof: The result is true for i = k. Assume true for

some i > k. Now L E ~i+l ~ L Rn L' for some L' E~
or L' E /).~ by induction. Therefore L' ~ L" for some

l p
L" E !'i-I.

But L Rn L' ~p L" ~ L Rn L" ~ L E !{ ~ L E /).~. 0

This hierarchy has the same inclusion structure
as the Kleene arithmetical hierarchy 7. in fact, the
arithmetical hierarchy is given by the above defini
tion if the relations Rn and ~ are replaced by "is
r.e. in" and "is recursive in"Prespectively. Un
fortunately, the diagonalization arguments by which
one can prove proper inclusion between successive
classes in the arithmetical hierarchy do not appear to
apply to the polynomial hierarchy. We do not know if
the inclusions 1) or 2) are proper. Proving that the
inclusion 2) is proper for all i is probably difficult
because it implies in particular that NP t P as the
following illustrates.

Other analogies can be drawn between the arith
metical and polynomial hierarchies. However, it seems
that almost anything non-trivial that can be said
about the polynomial hierarchy implies in particular
that NP * P.

Lemma 3.1 shows that the problem of proving NP *
P is reduced to the problem of exhibiting some language

L E !'i u n~ for any k ~ 1 such that L ~ P. For example,

if we could show that RSQ«(O,I}) E !{ U rr~ for some

k ~ 1, we could conclude NP * P. However, the follow
ing two results seem to indicate that REG«(O,I}) (and
hence RSQ«(O,l}» is not in the hierarchy.

Proof (k 2):

1) B2 E~ is clear.

2) Assume L E~ is accepted by some nondeter

ministic time p(n) machine ~with oracle
language L' E NP for some polynomial po

We will assume that mhas a second tape, called
the oracle tape, and three special states qc' qy' qN 0

Whenever ~ enters state qc' the next state is qy if

Y E L' or qN if Y ~ L' where y is the string currently

written on the ora~le tape. For simplicity, assume L'
bas been coded so that L' ~ (O,l}* and that the head
scanning the oracle tape can write only 0, 1, and b
(blank).

128

Given some x of length n, we will construct a
formula Ax(Xl , X2) such that

x E L ~ (~Xl)(VX2)[Ax(Xl' X2) = 1].

p(n)
main variables U U Y1t .

t=l
p(n)
t J YZt .

t=1

t for 1 ~ s,t ~ p(n),

1 iff tape square s contains symbol cr
i

at time

The construction will take time polynomial in n.

As in 5, the formula A will be (in part) a
function of the variables: x

pi
s,t

A is the conj unc tion of the terms in 5 together
x

with the new term J.

The reader may verify that the main variables can
describe a leg~l acsepting_computation of ~ on x if
and only if (~Xl)(VXZ) [Ax(X l , XZ) = 1]. 0

1 iff oracle tape square s contains symbol i at
at time t for 1 ~ s,t ~ p(n), i E (O,I,b},

and similar variables Qi, S ,S' t whose values
t s,t s,

determine the state and the two head positions. These
variables will be called the main variables.

5
Ax will be a conjunction of terms. As in

terms will be constructed so that A = 1 iff the main
x

variables describe a legal accepting computation of ~
on input x. The only difference is that now terms must
be constructed to insure that the state variables are
forced to assume the correct values following oracle
calls. This is done as follows.

It would be interesting to find some other prob

lems which are complete in ~ U n~. One approach is to

add another level of quantification to problems known
to be complete in NP. One possibility is the set of
all graph pair descriptions (G

l
, G2) such that any

subgraph of Gl is isomorphic to some subgraph of G
Z

.

It would be less artificial to find problems for which
the alternation of quantifier is not so obvious. The
language MINIMAL defined at the beginning of this sec
tion is one possibility.

Open Question: Is MINIMAL complete in ~ U n~?

otherwise

then y E L' ~ (~Y)[G(I,y) = 1].

Since L' E NP, there is a Boolean expression

G(I,Y) where i = (Ii I 1 ~ s ~ p(n), i E (O,l,b}}
s

such that if the variables I are given values corres
ponding to some string
y = YlY2 ••• Ym' Yj E (0,1}, j = 1, ••. , m,

in the sense that

Acknowledgment

Michael J. Fischer contributed several ideas to
this work. His help and interest are greatly apprecia
ted.

References

2. Hartmanis, J., P.M. Lewis, and R.E. Stearns,
"Hierarchies of Memory Limited Computations",
IEEE Conf. Rec . .Q!1 SWitching Th. and Logical Design,
Sixth Ann. ~., 1965, 179-190.

1. Hartmanis, J. and R.E. Stearns, "On the Computat
ional Complexity of Algorithms", Trans. Amer. Math.
Soc. 117, 1965, 285-306.Ys

band s > m

i

i

(R i }
s,t

where G
jt

are different copies of the formula G above,

each with distinct variables Y
jt

For each time t,

Moreover, G can be constructed in time polynomial

in p(n). G is constructed as in 5 except that some of
the tape symbol variables are left free for t = 1,
1 ~ s ~ p(n), instead of being bound to some fixed
input. These free variables become the I input varia
bles above.

J

A will contain the term
x

p(n)
1\ [QC [(--, GltCRt' Ylt)

t=l t

A (G2t (R
t

, YZt) Q~+I)]]

3. Shamir, E., "Relations Between Tape and Time
Complexity Via Pushdown Machines", Abstract 72T
C23,Notices of Amer. Math. Soc. 19, l, April 1972.

4. Meyer, A.R., "Weak Monadic Second Order Theory
of Successor is Not Elementary-Recursive",
manuscript, M.I.T., Project MAC, Cambridge, Mass.,
1972.

5. Cook, S., "The Complexity of Theorem - Proving
Procedures", Conf. Rec. of Third ACM~. £!! Th.
of Computing, 1970, 151-158.

6. Karp, R.M., "Reducibility Among Combinatorial
Problems", Tech. Report 1, Dept. of Computer Sci.,
University of California, Berkeley, 1972.

7. Rogers, H. Jr., Theory of Recursive Functions and
Effective Computability, McGraw-Hill, New York,
1967.

binds the input of G1t and G
2t

to the oracle tape at
this time.

The variables are distributed in the two blocks
as

129

