
INFORMATION AND COMPUTATION 81, 249-264 (1989)

An Automata Theoretic Decision Procedure
for the Propositional Mu-Calculus

ROBERT S. STREETT

Department of Mathematics and Computer Science, Mills College,
5000 Macarthur Boulevard, Oakland, California 94613

AND

E. ALLEN EMERSON*

Computer Science Department, University of Texas,
Austin. Texas 78712

The propositional mu-calculus is a propositional logic of programs which incor-
porates a least fixpoint operator and subsumes the propositional dynamic logic of
Fischer and Ladner, the infinite looping construct of Streett, and the game logic of
Parikh. We give an elementary time decision procedure, using a reduction to the
emptiness problem for automata on infinite trees. A small model theorem is
obtained as a corollary. 0 1989 Academic Press, Inc.

1. INTRODUCTION

First-order logic is inadequate for formalizing reasoning about
programs; concepts such as termination and totality require logics strictly
more powerful than first-order (Kfoury and Park, 1975). The use of a least
lixpoint operator as a remedy for these deficiencies has been investigated by
Park (1970, 1976), Hitchcock and Park (1973), de Bakker and de Roever
(1973), de Roever (1974), Emerson and Clarke (1980), and others. The
resulting formal systems are often called mu-calculi and can express such
important properties of sequential and parallel programs as termination,
liveness, and freedom from deadlock and starvation.

Dynamic logic (Pratt, 1976; Harel, 1979) applies concepts from modal
logic to a relational semantics of programs to yield systems for reasoning
about the before-after behavior of programs. Analogous to the modal logic
assertions 0 p (possibly p) and 0 p (necessarily p) are the dynamic logic
constructs (A) p and [A] p. If A is a program and p is an assertion about
the state of a computation, then (A) p asserts that after executing A, p can
be the case, and [A] p asserts that after executing A, p must be the case.

* The work of the second author was supported in part by NSF Grant MCS-8302878.

249
0890-5401/89 $3.00

Copyright 0 1989 by Academic Press, Inc.
All rights 01 reproduction m any form reserved.

250 STREETTAND EMERSON

Propositional versions of the mu-calculus have been proposed by Pratt
(1981) and Kozen (1982). These logics use a least lixpoint construct to
increase the expressive power of propositional dynamic logic (PDL) of
Fischer and Ladner (1979). Kozen’s formulation captures the infinite
looping construct of Streett (1982) and subsumes Parikh’s game logic
(1983a, 1983b), whereas Pratt’s logic is designed to express the converse
operator of PDL. The filtration-based decision procedure and small model
theorem obtained for PDL extend to Pratt’s mu-calculus, but the ability to
express infinite looping renders the filtration technique inapplicable to
Kozen’s version.

Kozen (1982) and Vardi and Wolper (1984) have obtained exponential
time decision procedures for fragments of Kozen’s mu-calculus. Both
fragments can express all of PDL, but are not strong enough to capture the
infinite looping construct of Streett (1981). Kozen and Parikh (1983) have
shown that the satisfiability problem for the full propositional mu-calculus
can be reduced to the second-order theory of several successor functions
(SnS). By results of Rabin (1969) this supplies a decision procedure for the
propositional mu-calculus, but one which runs in non-elementary time, i.e.,
time not bounded by any fixed number of compositions of exponential
functions. Meyer (1974) has shown that Rabin’s algorithm for SnS cannot
be substantially improved; SnS is inherently nonelementary.

In this paper, we show that the satisfiability problem for sentences of the
mu-calculus can be reduced to a certain emptiness problem for finite
automata on infinite trees (Rabin, 1969; Hossley and Rackoff, 1972). A
result of Streett (1981) shows that this reduction can be used to derive a
triple-exponential time decision procedure for the propositional mu-
calculus. Vardi (1984) has recently claimed a better upper bound for the
automata theoretic emptiness problem, which would lead to an exponential
space decision procedure.

2. SYNTAX AND SEMANTICS

DEFINITION 2.1. The formulas of the propositional mu-calculus are:

(1) propositional letters P, Q, R,

(2) propositional variables X, Y, 2

(3) IP, p v q, and p A q, where p and q are any formulas,

(4) (A) p and [A] p, where A is a member of a set of program
letters A, B, C, . . . and p is any formula,

(5) pX.f(X) and vX,f(X), where f(X) is any formula syntactically
monotone in the propositional variable X, i.e., all occurrences of X inf(X)
fall under an even number of negations.

PROPOSITIONALMU-CALCULUS 251

A sentence is a formula containing no free propositional variables, i.e.,
no variables unbound by a p or v operator. Sentences are interpreted in
Kripke structures (borrowed from Kripke’s semantics for modal logic
(Kripke, 1963)), . m which propositional letters denote subsets of states and
program letters denote binary relations on states.

DEFINITION 2.2. A Kripke structure is a triple (U, k, -+), where U is
a universe of states, b is a satisfaction relation between states and
propositional letters, and -+ gives, for each program letter A, a binary
relation +A on states.

DEFINITION 2.3. A model is a Kripke structure with the satisfaction
relation k extended to all sentences by means of the following rules: (In
what follows we use informally the notion of a formula being satisfied
under an interpretation of its free variables.)

(1) x+ipiffx~p,

(2) x k P v 4 iff x k P or x k 4,

(3) x+pAqiffx~pandx+q,

(4) x l= (A) p iff for some state y, x -+A y and y l= p,

(5) xl [A]piffforeveryysuchthat~+~y,yl=p,

(6) x k @‘.f(X) iff xEn{Sz UIS= {y/y b f(X) with X inter-
preted as S} },

(7) x k vX.f(X) iff XEU{SL UlS= {yly l==f(X) with X inter-
preted as S} }.

In a sentence &Y.f(X), f denotes a monotone function (monotonicity is
ensured by the syntactic monotonicity of the formula f(X)) on sets of
states, and pX.f(X) is interpreted as the least lixpoint of this operator,
i.e., the smallest set S of states such that S=f(S). The sentence vX.f(X)
denotes the greatest lixpoint of the functionf: The sentences pLX.f(X) and
vX.f(X) are dual, i.e., vX.f(X)= 1 pX.1 f(lX).

EXAMPLE. Here are some rather trivial lixpoint sentences:

(1) pLX.X=faZse, vX.Xr true,
(2) pX.PcvX.Pr P,

(3) pX.X v P= P, vX.X v PEtrue,

(4) pX.X A P-false, vX.X A P-P,

(5) pX. (A)Xr false,

(6) vX. [A] X- true.

252 STREETTAND EMERSON

EXAMPLE. The sentence vX. (A)X is true at x if there is an infinite
chain of A edges from x. It is equivalent to the infinite looping construct
AA of Streett (1982). Its negation, 1 vX. (A)X, can also be written as
@k’. [A]X (VA in the notation of Streett).

EXAMPLE. The sentence pX. P v (A) X is true at a state x if there is a
chain (possibly empty) of A edges leading from x to a state satisfying P. It
is equivalent to the sentence (A*) P of PDL.

EXAMPLE. In PDL, if a is a regular expression over the alphabet of
program letters, we can form a sentence (a) p, which is true at a state
when there is a chain of edges labelled with a string from the regular set a
leading to a state satisfying p. The following transformation rules show
how to translate such sentences into the mu-calculus:

(1) <A) P*(A) P,

(2) (a; P> p= <a>@> P,

(3) <auB>p*(a)pv (P>P,

(4) <a*> p*@.p v (a>X.

For example, the PDL sentence (A*uA;(BuAC)*)(B)P is
equivalent to the mu-calculus sentence (clx.<B)P v (A)X) v
(A)(,uX.(B)Pv (B)Xv (A)(C)X). Note that the translation is not
succinct; consider a PDL sentence (A u B) . . . (A u 8) P.

DEFINITION 2.4. A formula is in positive form when all negations apply
directly to propositional letters. The following rules can be used to convert
a formula to positive form:

(1) 11 P*P,

(2) 1 (P v 9)* 1 P A -I 9,

(3) 1 (PA q)* 1 Pl4,

(4) 1 (A)P*CAI~P,

(5) 1 CA1 P==-(A) 1~3
(6) 1 ,uX.f(X) =a VA’. 1 f(1 X),

(7) 1 vXf(X)*pX.1f(1 x).

DEFINITION 2.5. Let positive(p) denote the positive form of a sentence
p, and let not(p) denote positive (1 p), i.e., a positive representation of
the negation of p.

It will be convenient to deal only with positive sentences. It is
straightforward to extend a satisfaction relation from positive sentences to
all sentences by means of the rule: x ,k p iff x + positive(p).

PROPOSITIONALMU-CALCULUS 253

3. ORDINAL RANKS AND SIGNATURES

By the Tarski-Knaster theorem, . least and greatest fixpoints of
monotonic functions over subsets of a set U can be defined by transtinite
induction, i.e., the least fixpoint p(f) = U, p%(f), where

PO(f) = 09

Pz+ Iv-1 =fbz(f))~
pi(f) = u,, j. p,(f), for ,? a limit ordinal.

Similarly, the greatest fixpoint v(f) = n, v,(f), where

vo(S) = u

v,+ I(f) =f(v,(f))3

vi(f) = fl7, c i v,(f), for ;1 a limit ordinal.

It will be useful to consider an extension of the propositional mu-calculus
which contains, for each ordinal a and formula f(X) syntactically
monotone in X, formulas pc,X.f(X) and v,X.f(X). A model can be exten-
ded to cover these ordinal sentences by means of the following additional
rules:

(8) x V ~d’.f(X),

(9) -r I= pz+ J.f(X) iff x I= fGf.f(JX
(10) if /z is a limit ordinal, then x + pAX.f(X) iff for some a c A,

x t= P,X..w)~

(11) x l= v,X.f(W,

(12) x k va+1 X.S(W iff x I= S(v,X.f(X)h
(13) if ;1 is a limit ordinal, then x + vIX.f(X) iff for all c(< A,

x I= VJ..f(W~

It is then possible to recast rules (6) and (7) of Definition 2.3 in the forms

(6’) x k pX.f(X) iff for some ordinal a, x /= ,uaX.f(X),

(7’) x /= vX.f(X) iff for all ordinals a, x + v,X.f(X).

DEFINITION 3.1. A mu-sentence pX.f(X) has rank a at a state x if a is
the least ordinal such that fiL,X.f(X) is true at a.

EXAMPLE. Consider a model with an infinite backwards chain of A
edges ending in a state satisfying P, i.e.,

. . A x,--L . . . X,--% x,A x, /= P.

If X, l= 1 P for x > 1, then the sentence pX. P v (A) X has rank n at x,,,
for na 1.

254 STREETT AND EMERSON

EXAMPLE. In a model in which there are arbitrarily long finite chains
(but no infinite chains) of A edges from the state x, the sentence ,uX. [A] X
will have infinite rank 3 w at x (if every A successor of x has only bounded
chains of A edges then ,uX. [A]X has exactly rank o at 9).

Remark. The range of the ordinals used in connection with the fixed
points was not specified. We could take it to be the collection of all
ordinals, which is a proper class rather than a set. It suffices however to
take it to be the set of all ordinals of cardinality at most that of the state
space, since the closure ordinal of a monotone operator will not be greater.
This ensures that the lexicographical ordered collection of bounded length
sequences of ordinals, as used subsequently, is a well-founded set.

Since a mu-sentence can contain other mu-sentences as subsentences, it
is useful to associate a sequence of ordinal ranks to a sentence.

DEFINITION 3.2. A signature is a sequence of ordinals. If s and t are
signatures, we will write s < t to mean that s lexicographically precedes t.
Over a set of bounded length signatures, the lexicographic ordering is a
well-ordering.

DEFINITION 3.3. The mu-height of a sentence is the depth of nesting of
mu-subsentences of the sentence.

EXAMPLE. The sentence PX. P v (A)(pY. X v (B) Y) has mu-height 1,
since the subformula pY.X v (E) Y is not a sentence (it contains a free
variable Xl.

DEFINITION 3.4. Given a sentence p of mu-height n and a signature
s=al ‘..ci,, we say that p has signature s at x if s is the lexicographically
least signature such that the sentence obtained by replacing each mu-
subsentence pX.f(X) of mu-height i by &,: X.f(X) is true at x.

EXAMPLE. In a model in which the state x has countably many
B-successors y,, yn, . . . such that PX. P v (A)X has rank n at y,, the
sentence [B] pX. P v (A) X has signature o at x.

EXAMPLE. Consider pY. (pX.P v (A)(,uZ. X v (B) Z)) v (B) Y,
with mu-height 2 and equivalent to the PDL sentence (B*)((FIB*)*) P.
Consider a model in which there is a chain

If x, k I P for n > 1 then this sentence has signature 3, 2 at x9, 3, 1 at x8,
2, 2 at x,, 2, 1 at x6, 1, 5 at x5, 1, 4 at x4, 1, 3 at x3, 1, 2 at x2, and finally
signature 1, 1 at x1.

PROPOSITIONAL MU-CALCULUS 255

LEMMA 3.5. The following rules hold for signatures:

(1) ifp v q has signature s at x, then either p or q has signature t < s
at x.

(2) ifp A q has signature s at x, then both p and q have signatures <s
at x.

(3) if (A) p has signature s at x, then p has signature s at some
A-successor of x.

(4) if CA1 P h as signature s at x, then p has signature 6s at all
A-successors of x.

(5) if ~x.f(W h as signature s at x, then f(,uX. f(X)) has signature
f < s at x.

(6) q-vX.f(X) h as signature s at x, then f(vX.f(X)) has signature t,
where s is a prefix of t.

Proof. We will do case (5) only. Suppose pX.f(X) has mu-height n.
The mu-height of f(pX.f(X)) will be m b n. The mu-subsentences of
f(pX. f(X)) can be divided into three classes:

(1) The proper mu-subsentences of pX.f(X), with mu-height <n.

(2) pX.f(X) itself, with mu-height = n.

(3) Mu-sentences properly containing pX.f(X), with mu-height > n.

If pY. g(Y) is in the first class and can be replaced by p, Y.g(Y) within
pX.f(X) at x, then it can similarly be replaced withinf(pX.f(X)) at x. If
pX.jjX) has rank c1 at x, then PX. f (X) can be replaced by pLpX.f(X), for
some /3 < u, within f(,~X.f(x)) at x. Hence if pX.f(X) has signature
s=u, “‘cl, at x, then f(pX.f(X)) will have signature t = b, ...
Pn-,SJ?l+, . . . j?, at x, where pi d cli for i < n and fl, < a,,, so that t < s.

4. CHOICE FUNCTIONS

We can evaluate simple sentences in models by recursively evaluating
subsentences. Thus to check whether or not P v (A) Q is true at a state x
we either confirm that P is true at x or we look for an A edge leading to a
state satisfying Q. In order to evaluate fixpoint sentences, we will need
to confirm the fixpoint property, i.e., that PX. f(X) = f(PX. f(X)) and
vX. f(X) z f(VA’. f(X)). Thus evaluating a sentence may require recursively
evaluating a supersentence and hence subsentences of supersentences and
vice versa. The set of sentences whose evaluation is triggered in this way is
not too large, however, and can be defined as follows.

256 STREETT AND EMERSON

DEFINITION 4.1. The FischerLadner closure of a sentence p in positive
form, is the smallest set FL(p) of sentences satisfying the following
constraints:

(1)
(2)

(3)

(4)

(5)

(6)

(7)

(8)

PE FL(P),
if q E FL(p) then not(q) E FL(p),

if q v rEFL(p) then q, rEFL(p),

if q A r E FL(p) then q, r E FL(p),

if (A)qEFL(p) then qEFL(p),

if [A]qE FL(p) then qE FL(p),

if pX.f(X) E FL(p) then f(@.f(X)) E FL(p).

if vX.~(X)E FL(p) thenf(vX.f(X))E FL(p).

EXAMPLE. The Fischer-Ladner closure of the sentence +?c’. [A] X
contains only four sentences: @I. [A] X, vX. (A) X, [A] pLx. [A] X, and
<A)(vX.cA)n

EXAMPLE. The Fischer-Ladner closure of the sentence PX. P v (,4)X
consists of the following eight sentences:

(1) pXP.P v (A)X,

(2) vx.1 PA [A]X,

(3) P v (A)(pX.P v <A)X),
(4) 1 P A [A](VX.l P A [A]X),

(5) p,

(6) 1 P,

(7) (‘4XPX.P v (A >a

(8) CAI(vX.1 f’ A CAIW,

LEMMA 4.2. The cardinality of the Fischer-Ladner closure of a sentence
p is linear in the length of p, i.e., jFL(p)] = O(]pl).

Proof: A straightforward adaptation of the proof for PDL (Fischer and
Ladner, 1979).

The following definition includes exactly those properties of a model
which can be easily checked by recursive evaluation of closure sentences.

DEFINITION 4.3. A pre-model is a Kripke structure with a satisfaction
relation k extended to positive sentences under the following constraints:

PROPOSITIONAL MU-CALCULUS 251

(1) x I= P iff x F not(p),
(2) x b p v q iff either x ‘t= p or x b q,

(3) x k (A) p iff there is some edge x _tA y such that y b p,

(4) x I= pX.fW) iffx k fW.fW).

A pre-model is almost a model, except that rule (4) permits pX.f(X) to
be interpreted as an arbitrary tixpoint (least, greatest, or intermediate).
(Rule (1) ensures the proper complementary behavior for negated proposi-
tional letters, conjunctions, universal program sentences, and greatest
fixpoint sentences.)

EXAMPLE. Consider a Kripke structure with a single state x such that
x +A x and x + 1 P. This structure can be extended to a pre-model
in which x + pX.P v (A)X, x + P v (A)(pX.P v (A)X), and x k
(A)(pX. P v (A) X). This pre-model will not, however, be a model.

Fixpoint sentences can generate nonterminating evaluation sequences.
For example, occurrences of pX. X and vX.X merely trigger re-evaluation
of themselves via the fixpoint property, while pX. (A) X and vX. (A) X can
generate infinite sequences of reoccurrences along a chain of A edges. The
presence or absence of nonterminating evaluations distinguishes least from
greatest fixpoints (both of which share the fixpoint property). Least
fixpoint sentences must have terminating evaluations, while nontermination
is consistent with the semantics for greatest fixpoints (this explains why
pX. X - false and vX. X E true).

Disjunctions p v q and existential program sentences (A)p introduce a
complication; termination of the evaluation process depends on the choice
of disjunct or edge used to satisfy such sentences. For example, the sentence
@X. P v X expands to P v (pX. P v X); the disjunct P leads to termination,
the disjunct PX. P v X to nontermination. Consider the sentence
pX. P v (A) X, equivalent to the PDL sentence (A *) P, which is satisfied
in a Kripke structure exactly when the sentence P is true somewhere along
some path of A’s. By the fixpoint property, pX. P v (A)X is equivalent to
the disjunction P v (A)(pX. P v (A) X). A terminating evaluation occurs
if the A edges chosen to satisfy (A)(pX. P v (A) X) eventually lead to a
state where the disjunct P can be chosen. Consistently choosing to evaluate
the disjunct (A)(pX. P v (A) X) will lead to a nonterminating evaluation
along an infinite A chain (since nonterminating evaluations are consistent
with greatest fixpoints; this explains why vX. P v (A) X 3 (pX. P v
(A)W v (vX.(A)X)).

We shall consider pre-models supplied with a choice function responsible
for guiding the evaluation of least fixpoint sentences towards termination.

258 STREETT AND EMERSON

DEFINITION 4.4. A choice function for a pre-model is a function which
chooses, for every occurrence of a disjunction at a state, an occurrence of
one of the disjuncts at that state, and for every occurrence of an existential
program sentence (A) q at a state, an occurrence of q at an A-successor of
that state.

DEFINITION 4.5. Any choice function over a pre-model determines a
derivation relation between occurrences of sentences, defined by the
following rules:

(1) A disjunction, q v r, derives the disjunct selected by the choice
function.

(2) A conjunction, q A r, derives both conjuncts.

(3) A program sentence, (A) q, occurring at a state x, derives the
occurrence of q selected by the choice function.

(4) A program sentence, [A] q, occurring at x generates occurrences
of q at all A-successors of x,

(5) A mu-sentence, $f.f(X), derives f(@‘.f(X)).

(6) A nu-sentence, vX.f(X), derives f(vX.f(X)).

It should be obvious that a sentence can only derive members of its
Fischer-Ladner closure.

We would like to say that a pre-model is in fact a model when there is
no infinite derivation sequence which rederives a mu-sentence infinitely
often. However, this claim is true only when restricted to derivations in
which the given mu-sentence appears as a subsentence of every derivation
step, hence the following definition.

DEFINITION 4.6. A least lixpoint sentence pLx.f(X) is regenerated from
x to y if pX.f(X) at x derives pLX.f(X) at y in such a way that &C.f(X) is
a subsentence of every derivation step.

EXAMPLE. The sentence ~Y.(,uLX.(P v (A)(pY.Xv (B) Y)) v (B) Y)
can be regenerated across a B-edge, but not across an A-edge. A derivation
across an A-edge is possible, but requires &K P v (A)(p Y. X v (B) Y) as
a derivation step.

EXAMPLE. The sentence p = pX.(vX. P A (A)(pY.X v Y)) v (A) Y) is
true when there is an infinite chain of A edges along which P is infinitely
often true. Any model of this sentence will contain infinite derivation
sequences rederiving p infinitely often, but the subsentence q = vX. P A
(A) (p Y. X v (A) Y) must then occur infinitely often as a derivation step.

PROPOSITIONAL MU-CALCULUS 259

It is possible to construct a choice function such that any regeneration
sequence from p ultimately terminates at the choice q from the derived
disjunction q v (A) p.

DEFINITION 4.7. A choice function is well founded when the
regeneration relations for least fixpoint sentences are well founded. A pre-
model is well founded if it has a well-founded choice function.

THEOREM 4.8, Every model is a well-founded pre-model.

Proof Given a model, construct a choice function which always selects
the choice with lexicographically least signature. If $f. f (X), of mu-height
n, is regenerated from x to y, then pX. f (X) must be a subsentence of each
derivation step. Hence each sentence in the derivation has mu-height b n,
and thus signature of length at least n. We shall show that the signature of
pX. f(X) decreases (lexicographically) from x to y. The derivation sequence
must begin with pLX.f(X) => f(pX. f(X)). By Lemma 3.5, the signature of
f(pLx. f(X)) lexicographically precedes the signature of pLx. f(X) at the nth
position. We shall show that the remaining derivation steps cannot cancel
this initial decrease.

Clearly, derivation steps from conjunctions p A q and universal program
sentences [A] p cannot increase signature, regardless of the particular
choice function involved. The use of a choice function which selects on the
basis of least signatures guarantees that derivation steps from disjunctions
p v q and existential program formulas (A) p do not increase signature.

A derivation step may involve a lixpoint sentence pY.g(Y) or vZ.h(Z)
which contains pX. f(X) as a subsentence. In the former case, signature
does not increase. In the latter case, signature may actually increase, since
the signature of h(vZ.h(Z)) may be an extension of the signature of
vZ.h(Z). However, the net change in signature from the original sentence
pX. f(X) at state x will still be decreasing, since extending the signature
after the rzth position cannot cancel the effect of a decrease at the nth
position.

We have therefore shown that regeneration always decrease signature.
The signatures occurring in a derivation sequence from a sentence p have
bounded length (the upper bound is the maximum mu-height of a sentence
in FL(p)), so that the lexicographic ordering is well founded, forcing the
regeneration relations to be well founded.

THEOREM 4.9. Each well-founded pre-model is a model.

ProoJ: Suppose M is a pre-model supplied with a choice function so
that the regeneration relation for each mu-sentence is well founded. Then
each occurrence of a mu-sentence is associated with an ordinal, the well-

260 STREETTAND EMERSON

ordering ordinal of the regeneration relation from that occurrence. It is
thus possible to define a signature cl = c(, , c(?, cx, for each sentence q at
state x as follows:

cli = lub{ rx: q at x generates mu-sentence r at y, r has mu-depth i, and

r at y has regeneration ordinal CZ}.

The labelling L of A4 can be extended so that for each sentence q and state
x, if qE L(x) then qcC is added to L(x), thereby annotating each sentence
with its signature in the labelling. It is now easy to argue by induction on
formula structure and signature that

qEE L(x) implies x k qc(.

Thus qE L(x) implies x k q, and A4 is indeed a model. This completes the
proof of Theorem 4.9.

COROLLARY 4.10. For any sentence p, if p has a model, then p has a
model of bounded outdegree d I p 1.

Proof Consider the subset of FL(p) containing just the existential
program sentences of the form (A) q. This subset is no larger than Ip(,
since each program letter in p contributes at most one member to this sub-
set. Any model M of p has, by Theorem 4.8, a well-founded choice function
and thus defines a well-founded pre-model. Take the underlying Kripke
structure of M and prune it to outdegree d 1 pi by allowing edges x +A y
iff x k (A)q, where (A)qEFL(p) and y is chosen for (A)q at x by the
choice function of the original model M. The resulting, pruned Kripke
structure together with the choice function still defines a well-founded pre-
model M’, which is of bounded outdegree < IpI. By Theorem 4.9, M’ is
indeed a model.

5. THE DECISION PROCEDURE

Corollary 4.10 states that every satisfiable mu-calculus sentence p has a
model (or equivalently, a well-founded pre-model) with outdegree d IpI.
Such structures can be unwound into labelled trees of outdegree (arity)
< IpI which are suitable as input to finite automata on infinite trees
(Rabin, 1969; Hossley and Rackoff, 1972). In this section we will sketch
how, given a fixed mu-calculus sentence p, to program such an automaton
to recognize well-founded pre-models for p.

The input for the automaton for p will be a tree T where each node x has
been labelled with a subset of FL(p). We will assume that each disjunction

PROPOSITIONAL MU-CALCULUS 261

occurring on a node is marked to indicate a chosen disjunct. We can
number the existential program sentences occurring in FL(p) as
(A,)q,, ...> (A,) qn and assume that whenever (Ai) qi occurs on a node,
the choice function will choose the ith successor of the node. The
automaton for p is built from two component automata, which we call the
local automaton and the global automaton.

The local automaton is a large but simple deterministic automaton on
infinite trees. It performs three tasks. First, it ensures that p is among the
sentences labelling the root of the input tree. Second, it guarantees that at
every node, the subset S G FL(p) on that node is locally consistent, i.e.,
that

(1) qt5S iff not(q)#S,

(2) q v reS iff qES or reS,

(3) if q v r E S then its chosen disjunct E S,

(4) if fiX.f(X) E S iff J(@.f(X)) E S,

(5) &Y.f(X) cannot regenerate itself within S.

Third, it checks that the input tree is edge consistent, i.e., that

(1) if (A,)q, occurs on x, then the ith successor of x is labelled with
the sentence q,,

(2) if [A]q occurs on X, then for all i such that A = Ai, the ith
successor of ,X is labelled with q.

The local automaton can be built with O(2’PI) states; it needs to remember
subsets of FL(p).

The global automaton is a smaller but more sophisticated nondeter-
ministic automata on infinite strings; it will be run down every path of the
input tree. Its purpose is to look for an infinite regeneration sequence for
some mu-sentence in FL(p). It nondeterministically selects an occurrence
of a mu-sentence and a chain of nodes leading from that occurrence. At
each node in this chain it determines whether a regeneration sequence
could continue across the node. In order to do this, it must remember the
final derivation step from the preceding node, i.e., the existential or univer-
sal program sentence which extended the derivation across a program edge.
The global automaton accepts if it can find a regeneration sequence which
regenerates pX.f(X) infinitely often. The global automaton needs only
O(Jpl) states, since it remembers only single sentences in FL(p).

Since the global automaton accepts when it finds an infinite regeneration
sequence, an input tree will be a well-founded tree model only when it is
accepted by the local automaton and every path of the input tree is rejected
by the global automaton.

262 STREETT AND EMERSON

It is possible to take the nondeterministic global automaton and convert
it to a deterministic automaton which accepts exactly the paths rejected by
the original automaton (such a construction is given by McNaughton,
1966). Unfortunately, the new automaton will have 0(2*‘“‘) states, since
McNaughton’s construct involves a double exponential blowup. This new
automaton can be combined with the local automaton to produce a single
automaton on infinite trees, with 0(22’“‘) states, which accepts only well-
founded pre-models for p. The sentence p is satisfiable if and only if this
final automaton accepts a non-empty set of input trees. Hossley and
Rackoff (1972) give a decision procedure for testing whether or not an
arbitrary infinite tree automaton accepts an empty or non-empty set of
input trees; their decision procedure runs in time doubly exponential in the
size of the state space of the automaton. We have thus arrived at a decision
procedure for the propositional mu-calculus which runs in time quadruply
exponential in the length of the sentence tested.

This decision procedure can be improved by noting that the global and
local automata can be combined to yield a single complemented pairs
automation with O(2”‘“‘) states but only O(2’pl) pairs. The emptiness
problem for complemented pairs automata with n states and m pairs is
decidable in time O(2n .2’“). (Complemented pairs automata and their
emptiness problem have been investigated by Streett, 1981.) This yields a
triply exponential time decision procedure for the mu-calculus.

Vardi (19X4) considers the following automata theoretic problem: given
an infinite tree automaton and an infinite string automaton, is there any
input tree which is accepted by the infinite tree automaton while having
every path rejected by the infinite string automaton. Vardi claims that, if
the tree automaton has n states and the string automaton m states,
then this emptiness problem is decidable in space polynomial in n .2”.
This result would yield an exponential space decision procedure for the
mu-calculus.

An exponential space upper bound would be tantalizingly close to the
exponential time lower bound which is currently the best known. This
exponential time bound is a trivial extension of the Fischer and Ladner
(1979) lower bound result for PDL.

The propositional mu-calculus satisfies a finite model theorem: every
satisfiable sentence has a model with finitely many states. This result
is an easy corollary of a result about automata on infinite trees: every
automaton recognizable set of trees must contain a linitely generable tree,
i.e., a tree obtained from unwinding a finite graph. Every satisfiable mu-
calculus sentence p thus has a finite graph which unwinds into a model. In
fact this finite graph is a finite model.

The results of this paper are easily extended to include multiple fixpoints
as described by Vardi and Wolper (1984). Informally, an n-tuple of

PROPOSITIONAL MU-CALCULUS 263

formulas f, (X, , X,), f(X,, X,,) (where the Xis are free variables)
denotes a monotonic function on tuples of sets of states. The least or
greatest fixpoint of this function will be a tuple of states; selecting a com-
ponent of this tuple yields a single set of states, i.e., a suitable interpretation
for a sentence.

DEFINITION 5.1. The mu-calculus of multiple fixpoints includes the
following sentences: If, for 1 d i d n, ,f;(X, , X,) is a formula syntactically
monotone in all the free variables X,, X, (which need not be all the free
variables in the f;fi’s), then for 1 < i<n, pX,(X,, X,).(fi(X,, X,),
f,(X,, X,)1 and VXi(X,, X,,).(fI(XI, X,1,f.(X,, X,)) are
formulas (with semantics described informally above).

The fixpoint property for multiple fixpoints is cumbersome to express
without abbreviation. So, for 1 < idn, let pI abbreviate pX,(X,, X,).
(f,(X,, X,), f,(X,, X,)). Then the fixpoint property for least
fixpoints can be written as: pi -fj(pl, p,).

Multiple fixpoints can be used to give a succinct (i.e., linear) translation
of PDL into the propositional mu-calculus. The translation rule
(c(u j) p 3 (c() p v (b) p (which causes a potential exponential blowup
through the duplication of p) can be replaced by the rule
(01 u /I) p * pX(X, Y). (A Y v BY, P), which uses a double tixpoint to
avoid duplication of p. Other uses of multiple lixpoints are discussed by
Vardi and Wolper (1984).

RECEIVED August 9, 1985; ACCEPTED June 19. 1986

REFERENCES

DE BAKKER J., AND DE ROEVER. W. P. (1973). A calculus for recursive program schemes, in
“First International Colloquium on Automata, Languages, and Programming,”
pp. 167-196.

DE ROEVER, W. P. (1974), “Recursive Program Schemes: Semantics and Proof Theory,” Ph.D.
thesis, Free University, Amsterdam.

EMERSON. E. A.. AND CLARKE, E. M. (1980), Characterizing correctness properties of parallel
programs using lixpoints, in “Seventh International Colloquium on Automata, Languages
and Programming,” pp. 169-181.

FISCHER, M. J., AND LADNER, R. E. (1979). Propositional dynamic logic of regular programs,
J. Compui. System Sci. 18, 194-211.

HAREL, D. (1979), “First-Order Dynamic Logic,” Lecture Notes in Computer Science,
Vol. 68, Springer-Verlag.

HITCHCOCK, P., AND PARK, D. M. R. (1973). Induction rules and termination proofs, in “First
International Colloquium on Automata, Languages, and Programming,” pp. 225-251.

HOSSLEY, R., AND RACKOFF, C. W. (1972), The emptiness problem for automata on infinite
trees, in “Thirteenth IEEE Symposium on Switching and Automata Theory,” pp. 121-124.

264 STREETT AND EMERSON

KFOURY, A. J., AND PARK, D. M. R. (1975), On termination of program schemes, &form. and
Conrrol29, 243-251.

KOZEN, D. (1982), Results on the propositional mu-calculus, in “Ninth International
Colloquium on Automata, Languages, and Programming,” pp. 348-359.

KOZEN, D., AND PARIKH, R. J. (1983), A decision procedure for the propositional mu-
calculus, in “Second Workshop on Logics of Programs.”

KRIPKE, S. A. (1963), Semantical considerations on model logics, .4clu Philo,v. Fennicu.
MCNAUGHTON. R. (1966), Testing and generating infinite sequences by a finite automaton.

Inform. and Control 9. 521-530.
MEYER, A. R. (1974), Weak monadic second order theory of successor is not elementary

recursive, in “Boston Logic Colloquium.” Lecture Notes in Mathematics Vol. 453.
Springer-Verlag, New York/Berlin.

PARIKH, R. J. (1979). A decidability result for a second order process logic, in “Nineteenth
IEEE Symposium on the Foundations of Computer Science,” pp. 177-l 83.

PARIKH. R. J. (1983a), Cake cutting. dynamic logic, games, and fairness. in “Second
Workshop on Logics of Programs.”

PARIKH, R. J. (1983b). Propositional game logic, in “Twenty-third IEEE Symposium on the
Foundations of Computer Science.”

PARK, D. M. R. (1970), “Fixpoint Induction and Proof of Program Semantics.” Machine
Intelligence Vol. 5. Edinburgh Univ. Press, Edinburgh.

PARK. D. M. R. (1976), Finiteness is mu-ineffable, Thcorer. Comput. Sci. 3. 173-181.
PRATT, V. R. (1976). Semantical considerations on Floyd-Hoare logic, in “Seventeenth IEEE

Symposium on Foundations of Computer Science,” pp. 109%121.
PRATT. V. R. (1982). A decidable mu-calculus: Preliminary report, in “Twenty-second IEEE

Symposium on the Foundations of Computer Science.” pp. 421427.
RABIN, M. 0. (1969). Decidability of second order theories and automata on infinite trees,

Trans. Amer. Marh. Sot. 141, l-35.
STREETT. R. S. (1981). “Propositional Dynamic Logic of Looping and Converse,” Technical

Report TR-263. MIT LCS.
STREETT. R. S. (1982). Propositional dynamic logic of looping and converse is elementarily

decidable, Infbrm. and Control 54. 121-141.
STREETT, R. S., AND EMERSON. E. A. (1984). The propositional mu-calculus is elementary, in

“Eleventh International Colloquium on Automato, Languages, and Programming,” Lec-
ture Notes in Computer Science Vol. 172, pp. 465472, Springer-Verlag, New York/Berlin.

VARDI. M. (1984), private communication.
VARDI, M.. AND WOLPER, P. (1984), Automata theoretic techniques for modal logics of

programs, in “Sixteenth ACM Symposium on the Theory of Computing.”

