
A Novel Learning Algorithm for Büchi Automata
based on Family of DFAs and Classification Trees

Yong Lia,b, Yu-Fang Chenc, Lijun Zhanga,d,b,∗, Depeng Liua,b

aState Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing 100190

bUniversity of Chinese Academy of Sciences, Beijing 100049
cInstitute of Information Science, Academia Sinica, Taipei 11529

dInstitute of Intelligent Software, Guangzhou, Beijing 511400

Abstract

In this paper, we propose a novel algorithm to learn a Büchi automaton from a teacher who
knows an ω-regular language. The learned Büchi automaton can be a nondeterministic Büchi
automaton or a limit deterministic Büchi automaton. The learning algorithm is based on learning
a formalism called family of DFAs (FDFAs) recently proposed by Angluin and Fisman [1]. The
main catch is that we use a classification tree structure instead of the standard observation table
structure. The worst case storage space required by our algorithm is quadratically better than that
required by the table-based algorithm proposed in [1]. We implement the proposed learning al-
gorithms in the learning library ROLL (Regular Omega Language Learning), which also consists
of other complete ω-regular learning algorithms available in the literature. Experimental results
show that our tree-based learning algorithms have the best performance among others regarding
the number of solved learning tasks.

Keywords: Büchi Automata, Learning Algorithm, Automata Learning, Observation Table,
Family of DFAs, Classification Tree, L∗

1. Introduction

In the past two decades, learning-based automata inference techniques [2–5] have received
significant attention from the community of formal verification. In general, the primary applica-
tions of automata learning techniques in the community can be categorized into two: improving
the efficiency and the scalability of verification techniques [6–13] and synthesizing abstract sys-
tem models for further analysis [14–23].

The former is usually based on the so called assume-guarantee compositional verification
approach, which divides a verification task into several subtasks via a composition rule. Learn-
ing algorithms are applied to construct environmental assumptions of components in the rule
automatically. For the latter, automata learning algorithms have been used to automatically gen-
erate interface models of computer programs [17–20, 24], to extract a model of system error

∗Corresponding author
Email addresses: liyong@ios.ac.cn (Yong Li), yfc@iis.sinica.edu.tw (Yu-Fang Chen),

zhanglj@ios.ac.cn (Lijun Zhang), liudp@ios.ac.cn (Depeng Liu)
Preprint submitted to Information and Computation December 16, 2020

traces for diagnosis purpose [22], to get a behavior model of programs for statistical program
analysis [23], and to do model-based testing and verification [14–16]. Later, Vaandrager [25]
explained the concept of model learning used in above applications. In particular, there are
some robust libraries for finite automata learning available in the literature, e.g., libalf [26] and
LearnLib [27].

Besides the classical finite automata learning algorithms, people have also developed and ap-
plied learning algorithms for richer models for the above two applications. For example, learn-
ing algorithms for register automata [28, 29] have been developed and applied to synthesizing
program interface models. For timed automata, learning algorithms have been developed to au-
tomate the compositional verification of timed systems [10] and to verify specifications of the
TCP protocol [30]. However, all the above results are for checking safety properties or synthe-
sizing finite behavior models of systems/programs. Büchi automata are a standard model for
describing liveness properties of distributed systems [31] and have been widely applied in the
automata-based model checking framework [32] to describe properties to be verified as well as
in the synthesis of reactive systems [33]. Moreover, Büchi automata have been used as a means
to prove the termination of programs [34]. Therefore, in order to verify whether a system satis-
fies a liveness property with learning algorithms, a learning algorithm for Büchi automata can be
employed.

Motivated by that, Maler and Pnueli introduced in [35] the first learning algorithm for Büchi
automata, which is, however, only able to learn a strict subclass of ω-regular languages. The
first learning algorithm of Büchi automata accepting the complete class of ω-regular languages
was described in [36], based on the L∗ algorithm [4] and the result of [37]. However, unlike
the case for the finite automata learning, the research on applying Büchi learning algorithms
for verification problems is still in its infancy despite the popularity of Büchi automata in the
community.

One reason why the learning algorithms for Büchi automata have seldom been used is that the
learning algorithms for Büchi automata are currently not efficient enough for model checking.
Recently, Angluin and Fisman proposed a learning algorithm in [1] by learning a formalism
called family of DFAs (FDFAs), based on the results of [38]. The main barrier of applying their
learning algorithm in the verification is that their algorithm requires a teacher for FDFAs. To
the best of our knowledge, FDFAs have not yet been applied in the verification while Büchi
automata have already been used in several areas such as program termination analysis [39] and
probabilistic verification [40]. As a main contribution, in this paper, we show that the FDFA
learning algorithm in [1] can be adapted to support Büchi automata teachers.

To further improve the efficiency of Büchi learning algorithms, in this paper we propose a
novel learning algorithm of Büchi automata accepting the complete class of ω-regular languages
based on FDFAs and a classification tree structure (inspired by the tree-based L∗ algorithm in [3]
and the TTT learning algorithm in [41]). In terms of worst case storage space, the space required
by our algorithm is quadratically better than that of the table-based algorithm proposed in [1]. We
implement our learning algorithm for Büchi automata in the library ROLL [42](Regular Omega
Language Learning, http://iscasmc.ios.ac.cn/roll), which includes all other Büchi au-
tomata learning algorithms of the complete class of ω-regular languages available in the litera-
ture. We compare the performance of those algorithms using a benchmark of 295 Büchi automata
corresponding to all 295 LTL specifications available in Büchi Store [43], as well as 20 Büchi
automata whose languages cannot be specified by LTL formulas. Experimental results show
that our tree-based algorithms have the best performance among others regarding the number of
solved learning tasks.

2

http://iscasmc.ios.ac.cn/roll

To summarize, our contribution includes the following. (1) Adapting the algorithm in [1] to
support Büchi automata teachers. (2) A novel Büchi automata learning algorithm for the com-
plete class of ω-regular languages based on FDFAs and classification trees. (3) A comprehensive
empirical evaluation of all the Büchi automata learning algorithms available in the literature with
ROLL.

A previous version of our learning algorithm appeared in [44]. Compared to the previous
version, we have added more examples and intuitions about the proposed learning algorithms.
For instance, we have added Fig. 2 in order to give the readers an idea of three different types
of canonical FDFAs. We have provided detailed proofs and complexity analysis. Many proofs
given here are not trivial so we add them in the hope that the reader may benefit from those ideas
in their own works.

Another contribution made in this paper is that we extend the learning algorithm for Büchi
automata proposed in [44] to a learning algorithm for limit deterministic Büchi automata. Limit
deterministic Büchi automata are a new variety of Büchi automata introduced in [40, 45] for
qualitative verification of Markov Decision Processes (MDPs). More precisely, our learned limit
deterministic Büchi automata have two components, namely the initial component and the ac-
cepting component where two components are both deterministic and all accepting states are
contained in the accepting component. The nondeterminism only occurs on the transitions from
the initial component to the accepting component. We are aware that the same Büchi automata
are also defined in [46]. Moreover, limit deterministic Büchi automata are widely used in the
program termination analysis according to [39, 47]. Therefore, it is intriguing to see whether we
can apply our learning algorithm in probabilistic verification and program analysis and we leave
this to future work.

2. Preliminaries

Let ⊕ be the standard modular arithmetic operator. Let A and B be two sets. We use A 	 B
to denote their symmetric difference, i.e., the set (A \ B) ∪ (B \ A). We use [i · · · j] to denote
the set {i, i + 1, . . . , j}. Let Σ be a finite non-empty set of letters called alphabet. A word is a
finite or infinite sequence w = w[1]w[2] · · · of letters in Σ. We use ε to represent an empty word.
The set of all finite words is denoted by Σ∗, and the set of all infinite words, called ω-words, is
denoted by Σω. Moreover, we also denote by Σ+ the set Σ∗ \ {ε}. We use |u| to denote the length
of the finite word u. We denote by w[i] the i-th letter of a word w. We use w[i · · · k] to denote
the subword of w starting at the i-th letter and ending at the k-th letter, inclusive, when i ≤ k and
the empty word ε when i > k. Given a finite word u = u[1] · · · u[k] and a word w, we denote by
u · w the concatenation of u and w, i.e., the finite or infinite word u · w = u[1] · · · u[k]w[1] · · · ,
respectively. We may just write uw instead of u · w.

A finite automaton (FA) is a tuple A = (Σ,Q, q0, δ, F) consisting of a finite alphabet Σ, a
finite set Q of states, an initial state q0, a set F ⊆ Q of accepting states, and a transition relation
δ ⊆ Q × Σ × Q. For convenience, we also use δ(q, a) to denote the set {q′ | (q, a, q′) ∈ δ}. A
run of an FA on a finite word u = a1a2a3 · · · an is a sequence of states q0, q1, . . . , qn such that
q0 is the initial state and (qi, ai+1, qi+1) ∈ δ for every 0 ≤ i < n where n ≥ 1. The run on u of
an FA A is accepting if qn ∈ F. A word u is accepted by an FA A if A has an accepting run
on it. A finite language is a subset of Σ∗; the language of an FA A, denoted by L(A), is the set
{u ∈ Σ∗ | u is accepted by A}; the language of an FA is called a regular language. Let A and B be
two FAs; one can construct a product FA A × B accepting L(A) ∩ L(B) using a standard product
construction (see for example [48, Theorem 4.8]).

3

A deterministic finite automaton (DFA) is an FA such that δ(q, a) is a singleton for any q ∈ Q
and a ∈ Σ. For DFAs, we write δ(q, a) = q′ instead of δ(q, a) = {q′}. The transition can be lifted
to words by defining δ(q, ε) = q and δ(q, av) = δ(δ(q, a), v) for each q ∈ Q, a ∈ Σ and v ∈ Σ∗. We
also use A(v) as a shorthand for δ(q0, v).

An ω-language is a subset of Σω. Words of the form uvω, where u ∈ Σ∗ and v ∈ Σ+, are called
ultimately periodic words. We use a pair of finite words (u, v) to denote the ultimately periodic
word w = uvω. We also call (u, v) a decomposition of w. Note that an ultimately periodic
word uvω can have several decompositions: for instance (u, v), (uv, v) and (uvv, vv) are all valid
decompositions of uvω. For an ω-language L, let UP(L) = {uvω | u ∈ Σ∗, v ∈ Σ+, uvω ∈ L},
i.e., all ultimately periodic words in L. In this paper, we are particularly interested in a class
of ω-languages called ω-regular languages. In the following, we will introduce some automata
representations of ω-regular languages and discuss their roles in ω-regular language learning.

3. Representations of ω-Regular Languages

The first representation of ω-regular languages introduced here is Büchi automata, which
were originally introduced by Julius Richard Büchi in [49] and now have been widely used in
model checking. A Büchi automaton (BA) has the same structure as an FA, except that it accepts
only infinite words. A run of a BA on an infinite word is defined similarly to that of an FA
except that instead of ending in a state, it visits an infinite sequence of states. An infinite word
w is accepted by a BA A iff A has a run on w visiting an accepting state infinitely often. The
language of a BA A, denoted by L(A), is the set {w ∈ Σω | w is accepted by A}. An ω-language
L ⊆ Σω is ω-regular iff there exists a BA A such that L = L(A). A BA is a deterministic Büchi
automaton (DBA) if |δ(q, a)| ≤ 1 for each q ∈ Q and a ∈ Σ. A BA is a limit deterministic Büchi
automaton (LDBA) if its states set Q can be partitioned into two disjoint sets QN ∪QD, such that
1) δ(q, a) ⊆ QD and |δ(q, a)| ≤ 1 for q ∈ QD and a ∈ Σ and 2) F ⊆ QD. Limit deterministic Büchi
automata can also accept the complete class of ω-regular languages [40, 46] and thus have the
same expressive power as BAs, while DBAs are strictly less expressive than BAs [50]. For an
ω-regular language L, the set of ultimately periodic words of L, denoted by UP(L), can be seen
as the fingerprint of L, as stated below.

Theorem 1 (Ultimately Periodic Words of ω-Regular Languages [37, 49]). Let L, L′ be two
ω-regular languages. Then L = L′ if and only if UP(L) = UP(L′).

Proof (Sketch). We first prove the fact that every non-empty ω-regular language L contains
at least one ultimately periodic word. Let L be a non-empty ω-regular language and A be a
Büchi automaton accepting L. Assume that A is defined by the tuple (Σ,Q, q0, δ, F). There
must be an ω-word w ∈ L such that a corresponding run of A on w visits some accepting state
q f ∈ F infinitely often. Define two FAs A1 = (Σ,Q, q0, δ, {q f }) and A2 = (Σ,Q, q f , δ, {q f }) and
let U = L(A1) and V = L(A2). It immediately follows that U , ∅, V , ∅, and w ∈ UVω ⊆ L.
Therefore, we can find an ultimately periodic word uvω ∈ L with u ∈ U and v ∈ V .

Now we are ready to give the proof of the theorem. The implication from the left to the right
is trivial. It is easy to see that L	 L′ = (L \ L′)∪ (L′ \ L) is an ω-regular language since ω-regular
languages are closed under the operations of intersection, union, and complementation [49].
Assume that UP(L) = UP(L′). It follows that L 	 L′ does not contain any ultimately periodic
words and thus L	 L′ is an empty language according to the fact that every non-empty ω-regular
language L contains at least one ultimately periodic word. Therefore, we conclude that L = L′.
�

4

An immediate consequence of Theorem 1 is that, for every two ω-regular languages L1 and
L2, if L1 , L2 then there must exist some ultimately periodic word xyω ∈ UP(L1) 	 UP(L2).
Therefore, Calbrix et al. proposed a special DFA as another representation of ω-regular lan-
guages in [37]. More precisely, they construct a DFA D$ from a BA A to represent L = L(A)
such that L(D$) = {u$v | u ∈ Σ∗, v ∈ Σ+, uvω ∈ UP(L)} where $ < Σ is a fresh letter. Intu-
itively, D$ accepts every ultimately periodic word uvω of UP(L) by means of a decomposition
represented as the finite word u$v.

Our goal in this paper is to learn the ω-regular languages by means of Büchi automata and
our idea of learning goes back to the learning algorithm L∗ proposed by Angluin in [4]. In her
seminal work [4], Angluin proposed to learn an unknown regular language R by means of a DFA
and the right congruence is the theoretical foundation for it to discover states in the target DFA
accepting R. A right congruence is an equivalence relation v on Σ∗ such that x v y implies
xv v yv for every x, y, v ∈ Σ∗. We denote by |v| the index of v, i.e., the number of equivalence
classes of v. We use Σ∗/v to denote the set of equivalence classes of the right congruence v. A
finite right congruence is a right congruence with a finite index. For a word u ∈ Σ∗, we denote
by [u]v the class of v in which u resides.

For a regular language R, there exists a canonical DFA accepting R with the minimum num-
ber of states where every state of that DFA corresponds to an equivalence class of the right
congruence of R; such a DFA is unique when ignoring the names of states and is often called
the minimal DFA of R [48]. Thus L∗ is able to learn the minimal DFA of R by identifying all
its states or equivalently equivalence classes of right congruences. The main obstacle in learning
ω-regular languages by means of Büchi automata is that there is a lack of right congruences of
canonical Büchi automata for the complete class of ω-regular languages [51]. The BA learning
algorithm proposed in [36] circumvents the lack of right congruences by first using L∗ algorithm
to learn the DFA D$ as defined in [37], and then transforming D$ to a BA. Another way to bypass
the obstacle is to define other kinds of right congruences for ω-regular languages. Inspired by the
work of Arnold [52], Maler and Stager [53] proposed the notion of family of right-congruences
(FORC for short) for ω-regular languages. Based on the idea of FORC, Angluin and Fisman [1]
further proposed to learn ω-regular languages via a formalism called family of DFAs, in which
every DFA corresponds to a right congruence with a finite index. The BA learning algorithm
proposed in this paper first learns an FDFA and then transforms the learned FDFA to a BA.

Definition 1 (Family of DFAs (FDFA) [1]). A family of DFAs F = (M, {Aq}) over an alphabet
Σ consists of a leading DFA M = (Σ,Q, q0, δ, ∅) and a progress DFA Aq = (Σ,Qq, sq, δq, Fq) for
each q ∈ Q.

Notice that the leading DFA M is a DFA without accepting states. Each FDFA F character-
izes a set of ultimately periodic words UP(F).

Definition 2 (Acceptance condition of FDFA). 1 An ultimately periodic word w is in UP(F)
iff it has a decomposition (u, v) accepted by F . A decomposition (u, v) is accepted by F iff
M(uv) = M(u) and v ∈ L(AM(u)).

An example of an FDFA F is depicted in Fig. 1. M has only one state ε. The progress
DFA of ε is Aε . The word (ba)ω is in UP(F) because it has a decomposition (ba, ba) such that

1 We remark that our acceptance condition defined in Definition 2 is different from the original one in [1]. This
difference, however, does not change the set of ultimately periodic words accepted by a canonical FDFA introduced later.

5

M(ba·ba) = M(ba) and ba ∈ L(AM(ba)) = L(Aε). It is easy to see that the decomposition (bab, ab)
is not accepted by F since ab < L(AM(bab)) = L(Aε).

ε

M a

b

ε a

Aε

a, b

a

b

Figure 1: An example of an FDFA

For any ω-regular language L, there exists an FDFA F such that UP(L) = UP(F) [1]. We
show in Sect. 7 that an FDFA, however, does not necessarily accept anω-regular language. In [1],
three kinds of FDFAs are suggested as the canonical representations of ω-regular languages,
namely periodic FDFAs, syntactic FDFAs and recurrent FDFAs. Their formal definitions are
given below in terms of right congruences.

The right congruence vL of a given ω-regular language L is defined such that x vL y iff
∀w ∈ Σω.xw ∈ L ⇐⇒ yw ∈ L. The index of vL is finite because it is not larger than the number
of states in a deterministic Muller automaton (DMA) accepting L [38]. A DMA A has the same
structure as a DBA except that it has a set of sets of states AC ⊆ 2Q rather than a set of accepting
states F ⊆ Q where Q is the set of states of A. Further, an ω-word w is accepted by a DMA A iff
the set of infinitely appearing states in the run of A on w is exactly an element of AC.

Let A = (Σ,Q, q0, δ) be a DFA by ignoring its accepting states. We define a right congruence
vA as follows: x vA y iff δ(q0, x) = δ(q0, y) for any x, y ∈ Σ∗. Let vL be a right congruence
of a language L and A a DFA and we say vA and vL are consistent if for every x, y ∈ Σ∗,
x vA y⇐⇒ x vL y.

In this paper, by an abuse of notation, we use a finite word u to denote the state in a DFA in
which the equivalence class [u] resides. The three types of canonical FDFAs introduced in [1]
also follow the idea to recognize an ω-regular language L by means of UP(L) as D$ does in [37].

We first introduce the periodic FDFA, which Angluin and Fisman called in [1] the “FDFA
version” of the language L(D$) defined in [37].

Definition 3 (Periodic FDFA [1]). Let L be an ω-regular language. Then the periodic FDFA
F = (M, {Aq}) of L is defined as follows.
The leading DFA M is the tuple (Σ,Σ∗/vL , [ε]vL , δ, ∅), where δ([u]vL , a) = [ua]vL for all u ∈ Σ∗

and a ∈ Σ.
We define the periodic right congruence ≈u

P for each progress DFA Au of F as follows:
x ≈u

P y iff ∀v ∈ Σ∗.u(xv)ω ∈ L⇐⇒ u(yv)ω ∈ L.
The progress DFA Au of the state [u]vL ∈ Σ∗/vL is the tuple (Σ,Σ∗/≈u

P
, [ε]≈u

P
, δP, FP), where

we have that δP([v]≈u
P
, a) = [va]≈u

P
for all v ∈ Σ∗ and a ∈ Σ. The set of accepting states FP is the

set of equivalence classes [v]≈u
P

for which uvω ∈ L.

It has been shown in [1] that for any u, x, y, v ∈ Σ∗, xv ≈u
P yv holds if x ≈u

P y holds and ≈u
P is

of finite index for any given ω-regular language L. Therefore ≈u
P is a right congruence of finite

index for each u ∈ Σ∗ so one can build a finite transition system from each of them. Note that the
syntactic right congruences and the recurrent right congruences introduced later are also of finite
index.

6

ε

M

Leading

a b

aa ab

a
b

a b
a, b

a
b

b

a

ε

a b

Aε

Periodic

a
b

a b
a, b

ε

a b

ab

Aa

a
b

a

b

b

a
a, b

ε

Ab

a, b

ε

a b

Aaa

a
b

a b
a, b

ε

a b

Aab

a
b

a, b ba

ε

Aε

Syntactic

a b

aa ab

a
b

a b
a, b

a
b

b

a

ε

a b

ab

Aa

a
b

a

b

b

a
a, b

ε

Ab

a, b

ε

a b

Aaa

a
b

a b
a, b

ε

a b

Aab

a
b

a, b ba

ε

Aε

Recurrent

a, b

ε

Aa

a, b

ε

Ab

a, b

ε

a b

Aaa

a
b

a b
a, b

ε

a b

Aab

a
b

a, b ba

Figure 2: An example of three types of canonical FDFAs F = (M, {Aq}) of L = aω + abω

7

To further explain the canonical FDFAs, we introduce another notion for FDFAs. We say a
decomposition (u, v) is captured by an FDFA F = (M, {Aq}) if AM(u)(v) is an accepting state of
AM(u). According to Definition 3, the periodic FDFA F of L captures every decomposition of
uvω ∈ UP(L). Moreover, the language of the progress DFA Au of F is exactly the set {v ∈ Σ+ |
uvω ∈ L}. Take the periodic FDFA of L = aω + abω in Fig. 2 as an example where the leading
DFA M is given in the column labeled with “Leading” and the progress DFAs are in the column
labeled with “Periodic”. There are three equivalence classes of the periodic right congruence ≈aa

P ,
namely [ε]≈aa

P
, [a]≈aa

P
and [b]≈aa

P
. We can check that a is not in the equivalence classes [ε]≈aa

P
or

[b]≈aa
P

since there exists a finite word ε such that aa(aε)ω ∈ L while aa(εε)ω < L and aa(bε)ω < L.
The word ε does not belong to the equivalence class [b]≈aa

P
since there exists a word a such that

aa(ba)ω < L while aa(εa)ω ∈ L. There is a transition from the state a to the state b labeled with b
in the progress DFA Aaa since the word ab belongs to the equivalence class [b]≈aa

P
. The state a is

an accepting state of Aaa since aa(a)ω ∈ L according to Definition 3. One can easily verify that
the periodic FDFA indeed captures all possible decompositions of the ultimately periodic words
aω and abω in the form of (ε, a+) (by Aε), (a, a+) (by Aa), (a, b+) (by Aa), (aa+, a+) (by Aaa) and
(ab+, b+) (by Aab).

The second type of canonical FDFAs is the syntactic FDFA constructed from the FORC as
defined by Maler and Staiger in [38]. The leading DFA in the syntactic FDFA is the same as
that of the periodic FDFA; they are different from each other by the definitions of the progress
DFAs. Assume u is a state in the leading DFA. The progress DFA Au

P in the periodic FDFA of
L accepts the regular language {v ∈ Σ+ | uvω ∈ L}. In contrast, the progress DFA Au

S in the
syntactic FDFA accepts the regular language {v ∈ Σ+ | u vL uv ∧ uvω ∈ L}. If we construct from
the right congruence vL the leading DFA M, we have that M(u) = M(uv) for each v ∈ L(Au

S),
as u vL uv holds. In other words, the syntactic FDFA only captures the decompositions (u, v) of
uvω ∈ L such that M will go back to the state M(u) after reading the period v from M(u). This
minor change of the ultimately periodic words captured by the syntactic FDFA can make a big
difference as it has been shown in [1] that there exists some ω-regular language L for which the
number of states in the syntactic FDFA is exponentially smaller than that in the periodic FDFA.

Definition 4 (Syntactic FDFA [1]). Let L be an ω-regular language and the syntactic FDFA
F = (M, {Aq}) of L is defined as follows.
The leading DFA M is defined the same as in Definition 3.

We define the syntactic right congruence ≈u
S for each progress DFA Au of F as follows:

x ≈u
S y iff ux vL uy and ∀v ∈ Σ∗.uxv vL u =⇒ (u(xv)ω ∈ L⇐⇒ u(yv)ω ∈ L).

The progress DFA Au of the state [u]vL ∈ Σ∗/vL is defined similarly as in Definition 3 except that
the equivalence relation ≈u

S is used for the DFA construction. The set of accepting states FS is
the set of equivalence classes [v]≈u

S
for which uv vL u ∧ uvω ∈ L.

An example of the syntactic FDFA for L = aω+abω is given in Fig. 2, which is also considered
in [1]. In [1], the progress DFA Aa in the syntactic FDFA is not correct since there is a transition
from the state ab to the state b via the letter a. By the definition of ≈a

S in Definition 4, aba is not
in the equivalence class [b]≈a

S
since a · aba 6vL a · b. Recall that if aba and b belong to the same

equivalence class of ≈a
S , a · aba and a · b have to be in the same equivalence class of vL first.

However, it is easy to see that a · aba 6vL a · b since there exists a word bω that can distinguish
them. We remark that the decomposition (a, a) of aω is captured by the periodic FDFA but not

8

by the syntactic FDFA in Fig. 2 since the language of Aa of the syntactic FDFA is empty while
the language of Aa of the periodic FDFA is not.

The syntactic FDFA constructed by Definition 4 can have redundant states for someω-regular
languages. Let us consider the progress DFAs Aε and Aa of the syntactic FDFA in Fig. 2: they
both accept nothing while ≈εS and ≈a

S have 5 and 4 equivalence classes respectively. Therefore,
Angluin and Fisman proposed the use of the recurrent FDFA [1]. A progress DFA Au

R of the
recurrent FDFA of L accepts the same language as the progress DFA Au

S of the syntactic FDFA.
The difference is that Au

R is the minimal DFA recognizing the regular language L(Au
S).

Definition 5 (Recurrent FDFA [1]). Let L be an ω-regular language and the recurrent FDFA
F = (M, {Aq}) of L is defined as follows.
The leading DFA M is defined the same as in Definition 3.

We define the recurrent right congruence ≈u
R for each progress DFA Au of F as follows:

x ≈u
R y iff ∀v ∈ Σ∗.(uxv vL u ∧ u(xv)ω ∈ L)⇐⇒ (uyv vL u ∧ u(yv)ω ∈ L).

The progress DFA Au of the state [u]vL ∈ Σ∗/vL is defined similarly as in Definition 4 except that
we use the equivalence relation ≈u

R for the DFA construction.

Different from the syntactic FDFA which is associated to a Muller automaton [38], the re-
current right congruence ≈u

R focuses on the regular language Ru = {v ∈ Σ+ | u vL uv ∧ uvω ∈ L}
that the progress DFA Au should accept. The definition of ≈u

R is an instantiation of the right con-
gruence vRu for the regular language Ru where x vRu y iff ∀v ∈ Σ∗.xv ∈ Ru ⇐⇒ yv ∈ Ru for any
x, y ∈ Σ∗. Indeed, for any x1, x2 ∈ Σ∗, we have that x1 ≈u

R x2 iff x1 vRu x2. Therefore, we can see
that the right congruences ≈εR and ≈a

R of L = aω + abω in Fig. 2 both have only one equivalence
class, which is the only equivalence class needed for the empty language.

As aforementioned, we learn a BA by learning an FDFA since there are no corresponding
right congruences for general BAs. As you will see in Sect. 7, a smaller learned FDFA often re-
sults in a smaller learned BA. The reason why we keep both the periodic FDFA and the recurrent
FDFA for the BA learning algorithm in this paper is due to the following facts stated in [1] for a
fixed ω-regular language L.

• We mentioned before that the periodic FDFA can be exponentially larger than the syntactic
FDFA for some ω-regular language L.

• The recurrent FDFA of L is at least not larger than the syntactic FDFA of L.

• There exists some ω-regular language L such that the corresponding recurrent FDFA is
larger than the corresponding periodic FDFA.

Thus, we consider both periodic FDFAs and recurrent FDFAs in the BA learning algorithm,
as the recurrent FDFA and the periodic FDFA are incomparable regarding the number of states.
The reason why we keep syntactic FDFAs in the paper is that according to our experiments,
learning Büchi automata via learning syntactic FDFAs performs quite well in practice. We also
observe that the right congruences of a syntactic FDFA have stronger ability to discover new
states in the learning procedure than its other counterparts; see Fig. 6 in Sect. 6.1.

In the following, we present Proposition 1 to show that all the three types of canonical FDFAs
accept a special class of ultimately periodic words of L.

9

Proposition 1. Let L be an ω-regular language and F = (M, {Au}) the corresponding periodic
(syntactic, recurrent) FDFA of L. For any u, v ∈ Σ∗, if (u, v) is accepted by F then (u, vk) is also
accepted by F for every k ≥ 1.

Proof. Let ũ = M(u) and ṽk = Aũ(vk). We then have that vk ≈ũ
K ṽk for every k ≥ 1 where

K ∈ {P, S ,R}. This is because ṽk = Aũ(ṽk) = Aũ(vk) which means that vk is also in the equivalence
class [ṽk]. Our goal is to prove that (u, vk) is also accepted by F , i.e., uvk vM u and ṽk is an
accepting state for every k ≥ 1. Recall that vM and vL are consistent if for any x, y ∈ Σ∗,
x vM y ⇐⇒ x vL y. Note that vM and vL are indeed consistent for the canonical FDFAs. Thus
we have that uv vM u, i.e., uv vL u since (u, v) is accepted by F . It immediately follows that
uvk vL u for every k ≥ 1. Hence, the remaining proof is to show that ṽk is an accepting state for
every k ≥ 1 in the canonical FDFAs.

• Assume that F is the periodic FDFA of L. If (u, v) is accepted by F , ṽ = Aũ(v) must be an
accepting state of Aũ. It follows that ũ(ṽ)ω ∈ L according to Definition 3. By the definition
of ≈ũ

P, we have that ũ(v)ω ∈ L since ṽ ≈ũ
P v and ũ(ṽ)ω ∈ L hold. It follows that ũ(vk)ω ∈ L

for every k ≥ 1. Similarly, as ũ(vk)ω ∈ L and vk ≈ũ
P ṽk hold, we have that ũ(ṽk)ω ∈ L, which

indicates that the state ṽk is an accepting state in Aũ for every k ≥ 1.

• According to Definition 5, for any x, y ∈ Σ∗, ũx vL ũ ∧ ũxω ∈ L ⇐⇒ ũy vL ũ ∧ ũyω ∈ L
holds if x ≈ũ

R y. As x ≈ũ
S y implies x ≈ũ

R y, we also have above result if x ≈ũ
S y. In the

following, ≈ũ
K can be replaced by ≈ũ

S and by ≈ũ
R.

Let F be the syntactic FDFA or the recurrent FDFA of L. If (u, v) is accepted by F , we
have that ũṽ vL ũ and ũ(ṽ)ω ∈ L according to Definition 4 and Definition 5. From the fact
that v ≈ũ

K ṽ, we also have that ũv vL ũ and ũ(v)ω ∈ L, which implies that ũvk vL ũ and
ũ(vk)ω ∈ L for every k ≥ 1. Similarly, as vk ≈ũ

K ṽk holds, it follows that ũṽk vL ũ and
ũ(ṽk)ω ∈ L, which indicates that ṽk is an accepting state in Aũ for every k ≥ 1.

Hence we complete the proof. �

Lemma 1 ([1]). Let F be the periodic (syntactic, recurrent) FDFA of an ω-regular language L.
Then UP(F) = UP(L).

Lemma 2 ([54]). Let F be the periodic (syntactic, recurrent) FDFA of an ω-regular language
L. One can construct a BA recognizing L from F .

Lemma 3 ([37]). Let U,V ⊆ Σ∗ be two languages such that UV∗ = U and V+ = V. Then if
w ∈ UP(UVω), there must exist two words u ∈ U and v ∈ V such that w = uvω.

4. Büchi Automata Learning Framework based on FDFAs

We begin with an introduction of the framework on learning a BA (respectively, LDBA)
recognizing an unknown ω-regular language L, as depicted in Fig. 3.

10

M
em

ber
E

quivalence

FDFA learner FDFA teacher
B

A
teacher

Table-based [1] (Sect.5)

Tree-based (Sect. 6)
• Periodic FDFA

• Syntactic FDFA

• Recurrent FDFA

FDFA F to BA B (Sect. 7)
• Under-Approximation B
• Over-Approximation B

Analyze CE (Sect. 8)
• Under-Approximation B
• Over-Approximation B

F

MemFDFA(u, v) MemBA(uvω)

yes/no

EquFDFA(F) EquBA(B)

yes

Output a BA/LDBA recognizing the target language

no + uvωno +(u′, v′)

BA learner

Figure 3: Overview of the learning framework based on FDFA learning. The components in boxes are the results
from the existing works. The components in boxes are our new contributions.

Overview of the framework. First, we assume that we already have a BA teacher who knows
the unknown ω-regular language L and can answer membership and equivalence queries about
L. More precisely, a membership query MemBA(uvω) asks the teacher if uvω ∈ L. While an
equivalence query EquBA(B) asks whether a BA B accepts L. The BA teacher will answer “yes”
when L(B) = L, otherwise it will return “no” as well as a counterexample uvω ∈ L	 L(B), which
is possible due to Theorem 1.

The BA learner, shown in Fig. 3 surrounded by the thick dashed rounded box, is built based
on an FDFA learner. Note that one can place any FDFA learning algorithm to the FDFA learner
component. For instance, one can use the FDFA learner from [1] which employs tables to store
query results, or an FDFA learner using classification trees proposed in this paper. In order to
learn a BA from the BA teacher, the BA learner first uses the FDFA learner to learn an FDFA
by means of membership and equivalence queries about the target FDFA. This raises a problem
that the BA learner has to solve: the BA learner needs an FDFA teacher to answer membership
and equivalence queries about the target FDFA of L yet there is only a BA teacher available to
answer queries about the target language L. To solve this problem, the FDFA teacher has been
designed based on a BA teacher, a transformation component that transforms an FDFA F to a
BA B and a counterexample analysis component. In the following, we give an overview of the
FDFA learner and the FDFA teacher used in this framework.

The FDFA learner: The FDFA learner component will be introduced in Sect. 5 and Sect. 6.
We will first briefly review the table-based FDFA learning algorithms [1] in Sect. 5. Then our
tree-based learning algorithm for three types of canonical FDFAs will be introduced in Sect. 6.
The algorithm is inspired by the tree-based L∗ learning algorithm [3] and the TTT learning algo-
rithm in [41]. Nevertheless, applying the tree structures to learn the FDFAs is not a trivial task.
For example, instead of a binary tree used in [3], we need to use K-ary trees to learn syntactic
FDFAs. The use of K-ary trees complicates the procedure of refining the classification trees and
the automata construction. Besides that a node of a K-ary tree can have more than two children,
the difference between a learning algorithm with a binary tree and that with a K-ary tree is that
we may discover some new leaf nodes, i.e., new equivalence classes, when constructing a DFA
from a K-ary tree. More details will be provided in Sect. 6.

11

The FDFA teacher: The task of the FDFA teacher is to answer queries MemFDFA(u, v) and
EquFDFA(F) posed by the FDFA learner. Answering MemFDFA(u, v) is easy. The FDFA teacher
just needs to redirect the result of MemBA(uvω) to the FDFA learner. Answering equivalence
query EquFDFA(F) is more tricky.

From FDFAs to BAs. The FDFA teacher needs to transform an FDFA F to a BA B to pose an
equivalence query EquBA(B). In Sect. 7, we show that, in general, it is impossible to build a BA
B from an FDFA F such that UP(L(B)) = UP(F), as there exists an FDFA F accepting a non-
regularω-language. In addition, such kind of FDFAs F can be learned as an intermediate conjec-
tured FDFA F during the BA learning procedure. Therefore in Sect. 7, we propose two methods
to approximate UP(F), namely the under-approximation and the over-approximation method-
s. As the name indicates, the under-approximation (respectively, over-approximation) method
constructs a BA B from F such that UP(L(B)) ⊆ UP(F) (respectively, UP(F) ⊆ UP(L(B))). Un-
less stated otherwise, only one of the two approximation methods will be used to perform the
transformation from FDFAs to BAs in the whole BA learning procedure.

The under-approximation method is modified from the algorithm in [37]. Note that if the
FDFA F belongs to one type of canonical FDFAs, the BA B built by the under-approximation
method recognizes exactly UP(F), i.e., UP(L(B)) = UP(F), which makes it a complete method
for the BA learning (Lemmas 1 and 2). It follows that, in the worst case, the BA learning
algorithm with the under-approximation method has to first learn a canonical FDFA F of L for
constructing the right conjectured BA B such that UP(L(B)) = UP(F).

As for the over-approximation method, we only guarantee to get a BA B such that UP(L(B)) =

UP(F) if F is a special kind of canonical FDFAs, which thus makes our learning algorithm
with the over-approximation method an incomplete algorithm. The BA learning algorithm with
the over-approximation method may terminate with an error when the counterexample analysis
component fails to give a valid counterexample to the FDFA learner, which will be detailed in
Sect. 8. Nevertheless, in the worst case, the over-approximation method produces a BA whose
number of states is only quadratic in the size of the FDFA. In contrast, the number of states in
the BA constructed by the under-approximation method is cubic in the size of the FDFA in the
worst case. Therefore, we also consider the over-approximation method in the paper.

Counterexample Analysis. If the FDFA teacher receives “no” and a counterexample uvω from
the BA teacher, the FDFA teacher has to return “no” and a valid decomposition (u′, v′) that can
be used by the FDFA learner to refine F. In Sect. 8, we show how the FDFA teacher chooses a
pair (u′, v′) from uvω that allows the FDFA learner to refine the current FDFA F. As the dashed
line with a label F in Fig. 3 indicates, we need the current conjectured FDFA F to analyze the
counterexample. The under-approximation and the over-approximation methods of FDFA to BA
translation require different counterexample analysis procedures. More details will be provided
in Sect. 8.

Once the BA teacher answers “yes” for the equivalence query EquBA(B), the FDFA teacher
will terminate the learning procedure and output a BA recognizing L. We remark that the output
BA can be a nondeterministic BA or a limit deterministic BA.

5. Table-based Learning Algorithm for FDFAs

In this section, we briefly introduce the table-based FDFA learner in [1] under the assump-
tion that we have an FDFA teacher who knows the target FDFA. It employs a structure called

12

observation table [4] to organize the results obtained from queries and to propose candidate FD-
FAs. The table-based FDFA learner simultaneously runs several instances of DFA learners. The
DFA learners are very similar to the L∗ algorithm [4], except that they use different conditions to
decide if two strings belong to the same state (based on Definitions 3, 4 and 5). More precisely,
the FDFA learner uses one DFA learner L∗M for the leading DFA M, and for each state u in M,
one DFA learner L∗Au for each progress DFA Au. The table-based learning procedure works as
follows. The learner L∗M first closes the observation table by posing membership queries and then
constructs a candidate for the leading DFA M. For every state u in M, the table-based algorithm
runs an instance of the DFA learner L∗Au to infer the progress DFA Au. When all DFA learner-
s propose the candidate DFAs, the FDFA learner assembles them to an FDFA F = (M, {Au})
and then poses an equivalence query for it. The FDFA teacher will either return “yes” which
means the learning algorithm succeeds or return “no” accompanied by a counterexample. Once
receiving the counterexample, the table-based algorithm will decide which DFA learner should
refine its candidate DFA. We refer interested readers to [1] for more details on the table-based
algorithm.

6. Tree-based Learning Algorithm for FDFAs

In this section, we provide our tree-based learning algorithm for the FDFAs under the as-
sumption that we have an FDFA teacher knowing the target FDFA. To that end, we first define
the classification tree structure for the FDFA learning in Sect. 6.1 and then present the tree-based
learning algorithm in Sect. 6.2.

6.1. Classification Tree Structure in Learning

We first present our classification tree structure for the FDFA learning. Compared to the
classification tree defined in [3, 41], ours is not restricted to be a binary tree. Formally, a classi-
fication tree is a tuple T = (N, r, Ln, Le) where N = I ∪ T is a set of nodes consisting of the set
I of internal nodes and the set T of terminal nodes, the node r ∈ N is the root of the tree and
Ln : N → Σ∗ ∪ (Σ∗ × Σ∗) labels an internal node with an experiment and a terminal node with a
state. An experiment e ∈ Σ∗ ∪ (Σ∗ × Σ∗) is a finite word or an ω-word used to distinguish words
from different equivalence classes of the right congruence for the target automaton; while a state
u ∈ Σ∗ is a finite representative word of an equivalence class of the right congruence.

Intuitively, on learning a target automaton, a state u ∈ Σ∗ is the representative of a unique
state in the target automaton we have discovered so far. If there are two words u, u′ ∈ Σ∗ such
that u , u′ and they are representatives of different states in the target automaton, then we can
always find an experiment e to distinguish u and u′ according to the right congruence of the
target automaton. For instance, given the periodic FDFA of L = aω + abω as depicted in Fig. 2,
finite words a and b are two different states in the classification tree for the leading DFA M.
More precisely, a and b can be distinguished by an experiment (a, a) since a · aaω ∈ L while
b · aaω < L. We notice that in the classification tree for M, an experiment is an ultimately
periodic word w represented by a decomposition of w, while the experiments in the classification
trees for progress DFAs are finite words. The function Le : I ×D→ N maps a parent node and a
label to its corresponding child node; the set of labels D will be specified below.

During the learning procedure, we maintain a leading tree T for M, and for every state u in
M, a progress tree Tu for the progress DFA Au. For every classification tree, we define a tree
experiment function TE : Σ∗×(Σ∗∪(Σ∗×Σ∗))→ D. Intuitively, TE(x, e) computes the entry value

13

at row (state) x and column (experiment) e of an observation table in the table-based learning
algorithms and it also takes all possible inputs from Σ∗ × (Σ∗ ∪ (Σ∗ ×Σ∗)). As the experiments for
the leading tree and the progress trees are different, we actually have TE : Σ∗ × (Σ∗ × Σ∗) → D
for the leading tree and TE : Σ∗ × Σ∗ → D for progress trees. The labels of the nodes in a
classification tree T satisfy the following invariants. Let t ∈ T be a terminal node labeled with
a state x = Ln(t). Let t′ ∈ I be an ancestor node of t labeled with an experiment e = Ln(t′).
Then the child of t′ following the label TE(x, e), i.e., Le(t′,TE(x, e)), is either the node t or an
ancestor node of t. Figure 4 depicts a leading tree T of M in Fig. 2 for L = aω + abω. The
dashed line is for the F label and the solid one is for the T label. The tree experiment function
TE : Σ∗ × (Σ∗ × Σ∗) → {F,T} is defined as TE(u, (x, y)) = T iff uxyω ∈ L for any u, x, y ∈ Σ∗.
There are 4 internal nodes, namely i1, i2, i3 and i4, and 5 terminal nodes, namely t1, t2, t3, t4, and
t5. One can check that all nodes of T indeed satisfy aforementioned invariants. For instance, let
t = t2 be the terminal node and we have x = Ln(t) = ab. t2 has two ancestors, namely i1 and i2.
Let t′ = i1 and we have e = Ln(t′) = (ε, a). The child of t′ following the label TE(ab, (ε, a)) = F
is i2, which is an ancestor of t2.

i1(ε, a)

i2(ε, b) i3 (b, b)

t1b t2ab i4(ab, b) t3 a

t4aa t5 ε

T = ({i1, i2, i3, i4, t1, t2, t3, t4, t5}, i1, Ln, Le)

Figure 4: An example of the leading tree T for L = aω + abω.

The leading tree T : The leading tree T for M is a binary tree with labels D = {F,T}. We
have TE(u, (x, y)) = T iff uxyω ∈ L (recall the definition of vL in Sect. 2) where u, x, y ∈ Σ∗.
Intuitively, each internal node n in T is labeled by an experiment xyω represented as (x, y). For
any word u ∈ Σ∗, uxyω ∈ L (or uxyω < L) implies that the equivalence class of u lies in the
T-subtree (or F-subtree) of n. One example of the leading tree T for M of Fig. 2 is depicted in
Fig. 4. One can see that every label of the terminal nodes corresponds to a state of M.

The progress tree Tu: The progress tree Tu of the state u and the corresponding function
TE(x, e) are defined based on the right congruences ≈u

P, ≈u
S , and ≈u

R of the canonical FDFAs
introduced in Definitions 3, 4 and 5.

Periodic FDFAs. A progress tree for the periodic FDFA is also a binary tree labeled with D =

{F,T}. We have TE(x, e) = T iff u(xe)ω ∈ L where x, e ∈ Σ∗. Intuitively, for any u, u′ ∈ Σ∗

such that u 6≈u
P u′, there must exist some experiment e ∈ Σ∗ such that TE(u, e) , TE(u′, e).

For instance, the progress tree Taa for the progress DFA Aaa of the periodic FDFA of Fig. 2 is
depicted in Fig. 5. We can see that TE(ε, a) = T since aa(εa)ω ∈ L while TE(b, a) = F since
aa(ba)ω < L. Thus in Taa, the experiment a of the internal node i2 can distinguish the states ε
and b.

14

i1ε

i2a t3 a

t1b t2ε

Taa = ({i1, i2, t1, t2, t3}, i1, Ln, Le)

Figure 5: An example of the progress tree Taa for L = aω + abω.

Syntactic FDFAs. A progress tree for the syntactic FDFA is a K-ary tree labeled with D =

Q × {A,B,C} where Q is the set of states in the current leading DFA M and K = 3|Q|. Note
that when the current leading tree T is fixed, one can immediately construct M according to
Definition 6, which will be detailed in Sect. 6.2. Therefore, we can fix a leading DFA M in the
definition of TE function. For all x, e ∈ Σ∗, we have TE(x, e) = (M(ux), t), where t = A iff
u = M(uxe) ∧ u(xe)ω ∈ L, t = B iff u = M(uxe) ∧ u(xe)ω < L, and t = C iff u , M(uxe).

Consider the progress tree Taa for Aaa of the syntactic FDFA of Fig. 2 depicted in Fig. 6: the
dashed line, the dotted line and the solid line are labeled by Le with TE(a, ε) = (M(aaa), A) =

(aa, A), TE(ε, ε) = (M(aaε), B) = (aa, B) and TE(b, ε) = (M(aab),C) = (b,C) respectively.
Therefore for Taa, only the experiment ε of the internal node i1 is needed to distinguish the
states ε, a and b from each other while for the periodic and the recurrent progress trees at least
two experiments are needed. It indicates that the syntactic right congruences may identify more
states with the same amount of experiments compared to the two others.

i1ε

t1a t2 ε t3 b

Taa = ({i1, t1, t2, t3}, i1, Ln, Le)

Figure 6: The progress tree Taa for the syntactic FDFA of L = aω + abω.

Recurrent FDFAs. A progress tree for the recurrent FDFA is a binary tree labeled with D =

{F,T}. We have TE(x, e) = T iff u(xe)ω ∈ L∧ u = M(uxe) where x, e ∈ Σ∗. The progress tree Taa

for Aaa of the recurrent FDFA of Fig. 2 is also the one depicted in Fig. 5.

6.2. Tree-based Learning Algorithm
The tree-based learning algorithm first initializes the leading tree T and the progress tree Tε

as a tree with only one terminal node r labeled by ε.

Definition 6. From a classification tree T = (N, r, Ln, Le), the learner constructs a candidate
of the leading DFA M = (Σ,Q, ε, δ) or a progress DFA Au = (Σ,Q, ε, δ, F) as follows. The
set of states is Q = {Ln(t) | t ∈ T }. For s ∈ Q and a ∈ Σ, the transition function δ(s, a) is
constructed by the following procedure. Initially the current node n := r. If n is a terminal node,

15

it returns δ(s, a) = Ln(n). Otherwise, it picks a unique child n′ of n with Le(n,TE(sa, Ln(n))) = n′,
updates the current node to n′, and repeats the procedure 2. By Definitions 3, 4 and 5, the set of
accepting states F of a progress DFA Au can be identified from the structure of M with the help
of membership queries, where u is a state of M. For the periodic FDFA, F = {v | uvω ∈ L, v ∈ Q}
and for the syntactic and the recurrent FDFAs, F = {v | uv vM u, uvω ∈ L, v ∈ Q} where Q is the
set of states of Au.

Figure 7 depicts the periodic progress tree Ta and its corresponding progress DFA Aa for
L = aω + abω. The dashed line is for the F label while the solid one is for the T label. The tree
experiment function is defined as TE(x, y) = T iff a(xy)ω ∈ L. To construct Aa = (Σ,Q, ε, δ, F)
from Ta, one first has to construct the state set Q = {ε, a, b, ab} by collecting all terminal labels in
Ta. As for the transition function, we give an example to further illustrate it. For instance, δ(b, a)
is decided by classifying the word ba to one of the terminal nodes in Ta. Starting with the root i1,
we have TE(ba, Ln(i1)) = TE(ba, ε) = F since a · (ba · ε)ω < L. Therefore, we go to the F-child of
i1, namely i2. Since i2 is not a terminal node and we have TE(ba, Ln(i2)) = TE(ba, b) = F, we go
further to its F-child and finally reach the terminal node t1 labeled with ab. Thus, we conclude
that δ(b, a) = ab. We identify every state v ∈ Q such that avω ∈ L as an accepting state of Aa

according to Definition 6. Therefore, we have F = {a, b} since a · (a)ω ∈ L and a · (b)ω ∈ L.

i1ε

i2b i3 a

t1ab t2ε t3 b t4 a

Ta = ({i1, i2, i3, t1, t2, t3, t4}, i1, Ln, Le)

ε

a

b

ab

Aa a

b

a

b

b

a
a, b

Figure 7: An example of the periodic progress tree Ta and the periodic progress DFA Aa for L = aω + abω.

Whenever the learner has constructed an FDFA F = (M, {Au}), it will pose an equivalence
query for F . If the teacher returns “no” and a counterexample (u, v), the learner has to refine a
classification tree and then proposes another candidate FDFA.

Definition 7 (Counterexample for the FDFA Learner). Let L be the target language andF the
conjectured FDFA. We say that the counterexample (u, v) is

• positive if uv vM u, uvω ∈ UP(L), and (u, v) is not accepted by F , or

• negative if uv vM u, uvω < UP(L), and (u, v) is accepted by F .

2 For the syntactic FDFA, it can happen that δ(s, a) goes to a “new” terminal node when dealing with the progress
trees. A new state for the progress DFA is identified in such a case.

16

We remark that in our case every counterexample (u, v) from the FDFA teacher satisfies the
constraint uv vM u, which corresponds to the normalized factorization form with respect to M
in [1]. A normalized factorization of (u, v) with respect to M is the decomposition (x, y) such
that x = uvi, y = v j and 0 ≤ i < j are the smallest for which uvi vM uvi+ j according to [1]. As
vM is of finite index, there must exist such i and j [1]. Let (u, v) be a counterexample for the
FDFA learner defined in Definition 7; the normalized factorization (x, y) can be easily obtained
by setting x = u and y = v since uv vM u. For the FDFA learning algorithm presented in [1],
the normalized factorization (x, y) of the returned counterexample (u, v) is first computed and
later used in the refinement of the conjectured FDFA (see Algorithm 1 in [1]). This is due to
the fact that a decomposition (x, y) of a word uvω ∈ L is accepted by a canonical FDFA of L
if xy vM x according to Definition 2. Therefore, in order to remove (respectively, add) the
rejected (respectively, accepted) decomposition in the current conjectured FDFA, the normalized
factorization has to be computed first. One can check that our returned counterexample for the
FDFA learner constructed in Sect. 8 respects Definition 7. The way we analyze the returned
counterexamples is similar to the one applied in the table-based FDFA learning algorithm [1]
so we also follow their way to present the counterexample analysis for the FDFA learner in the
following.

Counterexample guided refinement of F : Below we show how to refine classification
trees with a negative counterexample (u, v). The case of a positive counterexample is symmetric.
By definition, we have uv ∼M u, uvω < UP(L) and (u, v) is accepted by F . Let ũ = M(u):
if ũvω ∈ UP(L), the refinement of the leading tree is performed, otherwise ũvω < UP(L), the
progress tree Tũ must be refined.

Refinement for the leading tree: In the leading DFA M of the conjectured FDFA, if a state
p has a transition to a state q via a letter a, i.e, q = M(pa), then pa has been assigned to the
terminal node labeled by q during the construction of M. If one finds an experiment e such
that TE(q, e) , TE(pa, e), then we know that q and pa can not belong to the same state in the
leading DFA. W.l.o.g., we assume TE(q, e) = F. In such a case, the leading tree can be refined
by replacing the terminal node labeled with q by a tree such that (i) its root is labeled by e, (ii) its
left child is a terminal node labeled by q, and (iii) its right child is a terminal node labeled by pa.

Below we discuss how to extract the required states p, q and experiment e for refining the
leading tree once receiving a negative counterexample (u, v). Let |u| = n and for i ∈ [1 · · · n], let
si = M(u[1 · · · i]) be the state reached after reading the first i-letters of u. Recall that si is the
representative word of the state M(u[1 · · · i]). In particular, s0 = M(ε) = ε and sn = M(u) =

ũ. Therefore, we can compute a sequence of results TE(s0, (u[1 · · · n], v)),TE(s1, (u[2 · · · n], v)),
TE(s2, (u[3 · · · n], v)) and so on, up to TE(sn, (u[n + 1 · · · n], v)) = TE(ũ, (ε, v)). Recall that we
have w[j · · · k] = ε when j > k as defined in Sect. 2. This sequence has different results for the
first and the last experiment function since TE(s0, (u[1 · · · n], v)) = F while TE(ũ, (ε, v)) = T by
the assumption that uvω < UP(L) and ũvω ∈ UP(L).

Therefore, there must exist the smallest j ∈ [1 · · · n] such that TE(s j−1u[j], (u[j+1 · · · n], v)) ,
TE(s j, (u[j + 1 · · · n], v)). It follows that we can use the experiment e = (u[j + 1 · · · n], v) to
distinguish q = s j and pa = s j−1u[j].

Example 1. Consider the intermediate conjectured FDFA F in Fig. 1 during the process of
learning L = aω + bω. The corresponding leading tree T and the progress tree Tε are depicted
on the left of Fig. 8. The dashed line is for the F label and the solid one is for the T label. Suppose
the FDFA teacher returns a negative counterexample (ab, b). The leading tree must be refined
since M(ab)bω = bω ∈ L. We find an experiment (b, b) to distinguish ε and a using the procedure

17

ε

T
ε

ε a

Tε
CE (ab, b)

(b, b)

a ε

T ′

ε a

M
a

b

a

b

Figure 8: Refinement of the leading tree and the corresponding leading DFA

above and update the leading tree T to T ′. The leading DFA M constructed from T ′ is shown
on the right of Fig. 8.

Refinement for the progress tree: Recall that ũ · vω < UP(L) and thus the algorithm is to
refine the progress tree Tũ. Let |v| = n and for i ∈ [1 · · · n], let si = Aũ(v[1 · · · i]) be the state
reached after reading v[1 · · · i]. In particular, s0 = Aũ(ε) = ε and sn = Aũ(v) = ṽ. Similarly,
we have a sequence of results TE(s0, v[1 · · · n]),TE(s1, v[2 · · · n]) and so on, up to TE(sn, v[n +

1 · · · n]) = TE(ṽ, ε). This sequence has different results for the first and the last experiment
function, i.e., TE(s0, v[1 · · · n]) , TE(ṽ, ε), which will be explained later. Therefore, there must
exist the smallest j ∈ [1 · · · n] such that TE(s j−1v[j], v[j + 1 · · · n]) , TE(s j, v[j + 1 · · · n]). It
follows that we can use the experiment e = v[j + 1 · · · n] to distinguish q = s j, pa = s j−1v[j] and
then refine the progress tree Tũ as follows. We refine Tũ by replacing the terminal node labeled
with s j by a tree such that (i) its root is labeled by e = v[j + 1 · · · n], (ii) its TE(s j, v[j + 1 · · · n])-
subtree is a terminal node labeled by s j, and (iii) its TE(s j−1v[j], v[j + 1 · · · n])-subtree is a
terminal node labeled by s j−1v[j].

To complete the refinement process, we show why TE(s0, v) , TE(ṽ, ε) holds.

Periodic FDFAs. As ũ(ε · v)ω < UP(L), we have TE(ε, v) = F. While TE(ṽ, ε) = T because ṽ is
an accepting state and thus ũ(ṽ · ε)ω ∈ UP(L). Thus TE(s0, v) , TE(ṽ, ε).

Syntactic FDFAs. We have uv vM u, i.e., M(uv) = M(u) according to Definition 7. Let ũ =

M(u). Recall that ũ is the representative word of the state M(u), which indicates that ũ = M(u) =

M(ũ). It follows that ũ = M(ũv) since M(uv) = M(u). Therefore, we have TE(ε, v) = (M(ũ · ε ·
v),B) = (ũ,B), where B is obtained here since ũ = M(ũ · ε · v) and ũ(ε · v)ω < UP(L) according to
the definition of TE for syntactic FDFAs. Moreover, ṽ is an accepting state of current syntactic
FDFA. It follows that ũ = M(ũṽ) and ũ(ṽ)ω ∈ L according to Definition 4. Therefore, we have
TE(ṽ, ε) = (M(ũṽ),A) = (ũ,A) where A is obtained since ũ = M(ũ · ṽ · ε) and ũ(ṽ · ε)ω ∈ UP(L).
Thus TE(s0, v) , TE(ṽ, ε).

Recurrent FDFA. Similar to the case for syntactic FDFAs, we have TE(ε, v) = F and TE(ṽ, ε) =

T. Thus TE(s0, v) , TE(ṽ, ε).
Optimization: Example 1 also illustrates the fact that the counterexample (ab, b) may not

be eliminated right away after the refinement. In this case, it is still a valid counterexample
(assuming that the progress tree Tε remains unchanged). Thus one can repeatedly use the coun-
terexample until it is eliminated as an optimization to reduce interactions with the teacher.

We introduce an immediate result of the counterexample guided refinement for F as Lem-
ma 4. It shows that the tree-based learning algorithm will make progress upon receiving a coun-
terexample, which is vital for the termination of the learning algorithm.

18

ε

M a

b

ε a

b

Aε
a

b

b

a

a b

Figure 9: An FDFA F such that UP(F) does not characterize an ω-regular language

Lemma 4. During the learning procedure, if the tree-based FDFA learner receives a counterex-
ample (u, v), then there will be at least a new state added to the leading DFA M or the progress
DFA Aũ where ũ = M(u).

7. From FDFAs to Büchi Automata

Since the FDFA teacher exploits the BA teacher for answering equivalence queries, the con-
version from the conjectured FDFA into a BA is needed. Unfortunately, with the following
example, we show that in general it is impossible to construct a precise BA B for an FDFA F
such that UP(L(B)) = UP(F). Note that this result has been discussed and proved for the first
time in the previous version [44] of this paper.

Example 2. Consider a non-canonical FDFA F in Fig. 9, we have UP(F) =
⋃∞

n=0{a, b}∗ ·(abn)ω.
We assume that UP(F) characterizes an ω-regular language L. It follows that the index of each
right congruence of the periodic FDFA F recognizing L with UP(F) = UP(F) is finite [1].
However, we can show that the right congruence ≈εP of the periodic FDFA F of L, if exists, must
be of infinite index. Observe that abk 6≈εP ab j for any k, j ≥ 1 and k , j, because ε · (abk · abk)ω ∈
UP(F) and ε · (ab j · abk)ω < UP(F). It follows that ≈εP is of infinite index. We conclude that
UP(F) cannot characterize an ω-regular language.

Therefore, in general, we cannot construct a BA B from an FDFA F such that UP(L(B)) =

UP(F). As mentioned in Sect. 4, we propose the under-approximation and the over-approximation
methods to approximate UP(F). We propose a BA B, which underapproximates UP(F), i.e.,
UP(L(B)) ⊆ UP(F). For the under-approximation method, on receiving a counterexample from
the BA teacher, the FDFA teacher can always find a valid counterexample for the FDFA learn-
er defined in Definition 7 to refine the current FDFA. Moreover, if F is a canonical FDFA,
the under-approximation method guarantees to construct a BA B such that UP(L(B)) = UP(F),
which makes it a complete method for the BA learning. Another proposal is to construct a BA
B that overapproximates UP(F), i.e., UP(F) ⊆ UP(L(B)). For the over-approximation method,
given a canonical FDFA F , that whether UP(L(B)) = UP(F) is still unknown and the FDFA
teacher may not be able to find a valid counterexample for the FDFA learner when dealing with
counterexamples returned from the BA teacher. Nevertheless, the over-approximation method
guarantees to construct a BA B such that UP(L(B)) = UP(F) for a special class of canonical
FDFAs F . We keep the over-approximation method in the paper since the size of B is quadratic
in the size of the conjectured FDFA while the size of B is cubic in the worst case according to
Lemma 6.

We first give the main idea behind the two approximation methods and then give the formal
definition of these two methods. Given an FDFA F = (M, {Au}) with M = (Σ,Q, q0, δ) and Au =

19

(Σ,Qu, su, δu, Fu) for all u ∈ Q, we define Ms
v = (Σ,Q, s, δ, {v}) and (Au)s

v = (Σ,Qu, s, δu, {v}), i.e.,
the DFA obtained from M and Au by setting their initial state and accepting states to s and {v},
respectively. We define N(u,v) = {vω | uv vM u ∧ v ∈ L((Au)su

v)}, which includes only the words
v ∈ L((Au)su

v) such that u = M(u) = M(uv). Therefore, according to Definition 2, it follows that
UP(F) =

⋃
u∈Q,v∈Fu

L(Mq0
u) · N(u,v) where L(Mq0

u) contains the finite prefixes and N(u,v) contains
the periodic finite words for every state pair (u, v).

We construct B and B by approximating the set N(u,v). For B, we first define an FA P(u,v) =

(Σ,Q(u,v), s(u,v), δ(u,v), { f(u,v)}) = Mu
u × (Au)su

v and let N(u,v) = L(P(u,v))ω. Then one can construct
a BA (Σ,Q(u,v) ∪ { f }, s(u,v), δ(u,v) ∪ δ f , { f }) recognizing N(u,v) where f is a “fresh” state and δ f =

{(f , ε, s(u,v)), (f(u,v), ε, f)}. Note that ε transitions can be taken without consuming any letters and
can be removed by standard methods in automata theory, see e.g., [48]. It is easy to see that for
any (v1)ω ∈ N(u,v), there exists a word v′ ∈ L(P(u,v)) such that (v1)ω = (v′)ω and for any v2 ∈
L(P(u,v)), we have that (v2)ω ∈ N(u,v). Therefore, a simple and natural way to overapproximate the
set N(u,v) is to construct a BA accepting L(P(u,v))ω, i.e., N(u,v). Intuitively, we overapproximate
the set N(u,v) as N(u,v) by adding (v1 · v2)ω into N(u,v) if (v1)ω ∈ N(u,v) and (v2)ω ∈ N(u,v) where
v1, v2 ∈ Σ+. For B, we define an FA P(u,v) = Mu

u × (Au)su
v × (Au)v

v and let N(u,v) = L(P(u,v))
ω. One

can construct a BA recognizing N(u,v) using a similar construction to the case of N(u,v). Intuitively,
we underapproximate the set N(u,v) as N(u,v) by only keeping vω ∈ N(u,v) if Au(v) = Au(v · v) where
v ∈ Σ+. In Definition 8 we show how to construct BAs B and B s.t. UP(L(B)) =

⋃
u∈Q,v∈Fu

L(Mq0
u)·

N(u,v) and UP(L(B)) =
⋃

u∈Q,v∈Fu
L(Mq0

u) · N(u,v).

Definition 8. Let F = (M, {Au}) be an FDFA where M = (Σ,Q, q0, δ) and Au = (Σ,Qu, su, δu, Fu)
for every u ∈ Q. Let (Σ,Q(u,v), s(u,v), δ(u,v), { f(u,v)}) be a BA recognizing N(u,v) (respectively N(u,v)).
Then the BA B (respectively B) is defined as the tupleΣ,Q ∪ ⋃

u∈Q,v∈Fu

Q(u,v), q0, δ ∪
⋃

u∈Q,v∈Fu

δ(u,v) ∪
⋃

u∈Q,v∈Fu

{(u, ε, s(u,v))},
⋃

u∈Q,v∈Fu

{ f(u,v)}
 .

Intuitively, we connect the leading DFA M to the BA recognizing N(u,v) (respectively N(u,v))
by linking the state u of M and the initial state s(u,v) of the BA with an ε-transition for every state
pair (u, v) where v ∈ Fu.

Figure 10 depicts the BAs B and B constructed from the FDFA F in Fig. 1. In the example,
we can see that bω ∈ UP(F) while bω < UP(L(B)).

q0 q1 q2

q′2

B
a

b

ε
a, b

a

b

εε

q0 q1 q2

q3

q′2

q4

B
a

b

ε a

b

a

b

ε

ab a, b

ε

Figure 10: The NBAs B and B constructed from F of Fig. 1

20

sq f ′ f
vm

vc−m

vm

Figure 11: Illustration of Aq(v j) = Aq(v2 j).

In the following, we introduce Lemma 5, which will be used to prove Lemma 6.

Lemma 5. Let F = (M, {Au}) be an FDFA, and B be the BA constructed from F by Definition 8.
If (u, vk) is accepted by F for every k ≥ 1, then uvω ∈ UP(L(B)).

Proof. Let F be the FDFA where we have M = (Σ,Q, q0, δ) and Aq = (Σ,Qq, sq, δq, Fq) for
each q ∈ Q. Let q = M(u) be the state in M after reading the word u. In the progress DFA Aq,
we have vk ∈ L(Aq) for any k ≥ 1 by assumption. Since the number of accepting states in the
DFA Aq is finite, we claim that there must exist an integer, say j ≥ 1, such that p = Aq(v j) =

Aq(v j · v j) for some p ∈ Fq, which will be proved later. Therefore, v j ∈ L(P(q,p)) holds where
P(q,p) = Mq

q × (Aq)sq
p × (Aq)p

p. The reason why v j ∈ L(P(q,p)) holds is that: (i) v j ∈ L(Mq
q) since

(u, v j) is accepted by F by assumption and thus q = M(u) = M(u · v j); (ii) v j ∈ L((Aq)sq
p × (Aq)p

p)
since p = Aq(v j) = Aq(v j · v j) and p ∈ Fq. Recall that UP(L(B)) =

⋃
q∈Q,p∈Fq

L(Mq0
q) · N(q,p) =⋃

q∈Q,p∈Fq
L(Mq0

q) · (L(P(q,p)))
ω. Thus we have u · (v j)ω = uvω ∈ UP(L(B)).

Now we show that there exists an integer j ≥ 1 such that p = Aq(v j) = Aq(v j · v j) for some
p ∈ Fq. Since Aq is a DFA with finite accepting states, there must be some m ≥ 1 and c > m
such that f ′ = Aq(vm) = Aq(vm+c), which is depicted in Fig. 11. Let j = c. It is easy to see that
the state p is actually the accepting state f in Fig. 11 since f = Aq(vc) = Aq(vc+c). Therefore, we
complete the proof. �

Lemma 6 (Sizes and Languages of B and B). Let F be an FDFA and B, B be the BAs con-
structed from F by Definition 8. Let n and k be the numbers of states in the leading DFA
and the largest progress DFA of F , respectively. The numbers of states of B and B are in
O(n2k3) and O(n2k2), respectively. Moreover, UP(L(B)) ⊆ UP(F) ⊆ UP(L(B)) holds and we
have UP(L(B)) = UP(F) when F is a canonical FDFA.

Proof. • Sizes of B and B. In the under-approximation construction, for each state q of M,
there is a progress DFA Aq of size at most k. It is easy to see that the DFA P(q,p) is of size
at most nk2 for every p ∈ Fq of Aq. Thus B is of size at most n + nk · nk2 ∈ O(n2k3). The
over-approximation method differs in the construction of the DFA P(u,v) from the under-
approximation method. It is easy to see that the DFA P(q,p) is of size at most nk for every
v ∈ Fp of Aq. Therefore B is of size at most n + nk · nk ∈ O(n2k2).

• UP(L(B)) ⊆ UP(F). Let w be an ultimately periodic word accepted by B, i.e., w ∈
UP(L(B)) =

⋃
q∈Q,p∈Fq

L(Mq0
q) · (L(P(q,p)))

ω. Therefore, there exist a state q of M and a
state p ∈ Fq of Aq such that w = u · v1 · v2 · vn · · · where u ∈ L(Mq0

q), vi ∈ L(P(q,p)) for
every i ≥ 1 and q0 is the initial state of M. According to Definition 8, P(q,p) is the product

21

of three DFAs Mq
q , (Aq)sq

p and (Aq)p
p where sq is the initial state in Aq. It follows that (i)

L(Mq0
q) · (L(P(q,p)))

∗ = L(Mq0
q) holds and (ii) (L(P(q,p)))

+ = L(P(q,p)) holds.

In the following we prove equation (i) and then equation (ii). First L(Mq0
q) · (L(P(q,p)))

∗ ⊆
L(Mq0

q) holds since L(P(q,p)) ⊆ L(Mq
q). Moreover, ε ∈ (L(P(q,p)))

∗ and it follows that
L(Mq0

q) ⊆ L(Mq0
q) · (L(P(q,p)))

∗. Thus, we have proved that equation (i) holds. Similarly, we
can prove (L(P(q,p)))

+ ⊆ L(P(q,p)) by the fact that (L((Aq)p
p))+ ⊆ L((Aq)p

p) and L(P(q,p)) ⊆
L((Aq)p

p). Together with the fact that L(P(q,p)) ⊆ (L(P(q,p)))
+, we conclude that equation (ii)

holds.

Let U,V ⊆ Σ∗ be two languages such that UV∗ = U and V+ = V . Then if w′ ∈ UP(UVω),
there must exist two words u ∈ U and v ∈ V such that w′ = uvω according to Lemma 3.
We let U = L(Mq0

q) and V = L(P(q,p)). According to equations (i) and (ii), we have that
UV∗ = U and V+ = V . Since w ∈ L(UVω), there must exist two words x ∈ L(Mq0

q) and
y ∈ L(P(q,p)) such that w = x · yω. In other words, w is accepted by F . Thus UP(L(B)) ⊆
UP(F) holds.

• UP(F) ⊆ UP(L(B)). Let w be an ω-word in UP(F). Then there exists a decomposition
(u, v) of w such that uv vM u and p is an accepting state of Aq where q = M(u) and
p = Aq(v). It follows that u ∈ L(Mq0

q) since q = M(u). Further, we have v ∈ L(P(q,p)) since
P(q,p) = Mq

q × (Aq)sq
p according to Definition 8 where sq is the initial state of Aq. It follows

that u · vω ∈ L(Mq0
q) · (L(P(q,p)))ω ⊆ UP(L(B)).

• UP(L(B)) = UP(F) if F is a canonical FDFA. UP(L(B)) ⊆ UP(F) holds for any FDFA F .
Thus, we only have to prove that UP(F) ⊆ UP(L(B)) if F is a canonical FDFA. It directly
follows from Proposition 1 and Lemma 5.

Therefore, we complete the proof. �

Lemma 8 introduces a special class of canonical FDFAs F for which the over-approximation
method produces a BA B such that UP(B) = UP(F). In order to prove Lemma 8, we will first
introduce Lemma 7, which has also been used to analyze the counterexamples from the BA
teacher in Sect. 8.1.

Lemma 7. Let F = (M, {Aq}) be an FDFA and B be the BA constructed from F by Definition 8.
For any w ∈ UP(L(B)), there are a decomposition (u, v) of w and an integer n ≥ 1 such that
v = v1 · · · vn and for all i ∈ [1 · · · n], vi ∈ L(AM(u)) and uvi vM u.

Proof. Since we only consider ultimately periodic words of L(B), the ω-words will be given by
their decompositions in this proof. In the following we fix an ω-word w.

According to Definition 8, UP(L(B)) =
⋃

q∈Q,p∈Fq
L(Mq0

q) ·(L(P(q,p)))ω where Q is the state set
of M and Fq is the set of accepting states of Aq. It follows that w can be given by a decomposition
(u, v) such that u ∈ L(Mq0

q) and v ∈ (L(P(q,p)))+ for some p ∈ Fq where q = M(u). Thus, there
exists an integer n ≥ 1 such that v = v1 · · · vn and vi ∈ L(P(q,p)) for every 1 ≤ i ≤ n. In addition,
we have that uvi vM u and vi ∈ L((Aq)sq

p) for every 1 ≤ i ≤ n since P(q,p) = Mq
q × (Aq)sq

p where sq

is the initial state in Aq. Note that p is the only accepting state of (Aq)sq
p since (Aq)sq

p is obtained
from Aq by setting p ∈ Fq as its only accepting state. Moreover, p = (Aq)sq

p (vi) = Aq(vi) for every
1 ≤ i ≤ n.

22

The remaining proof will show how we can find the accepting state p in Aq for w. Let w be a
word given by the decomposition (u, v). From the decomposition, we can construct an FA Du$v
such that L(Du$v) = {u′$v′ | u′v′ω = uvω} by the method introduced later in Sect. 8.2 where $ is
not a letter in Σ. We note that the number of states inDu$v is in O(|v|(|v| + |u|)) (see Sect. 8.2). In
addition, we can construct an FA A such that L(A) =

⋃
q∈Q,p∈Fu

L(Mq0
q) · $ · (L(Mq

q × (Aq)sq
p))+.

By fixing a state q of M and an accepting state p of Aq, we can construct an FA A(q,p) such that
L(A(q,p)) = L(Mq0

q) · $ · (L(Mq
q × (Aq)sq

p))+ = L(Mq0
q) · $ · (L(P(q,p)))+. Recall that in the over-

approximation construction, P(q,p) is defined as Mq
q × (Aq)sq

p . We can identify the corresponding
q and p such that L(A(q,p) × Du$v) , ∅ since there must exist such two states q and p otherwise
uvω will not be accepted by B. To get all the fragment words vi out of v, one only needs to
use P(q,p) to run the finite word v. The time and space complexity of this procedure are in
O(nk(n + nk) · (|v|(|v| + |u|))) and O((n + nk) · (|v|(|v| + |u|))) respectively where n is the number of
states of M and k is the number of states in the largest progress DFA of F . Thus we complete
the proof. �

Lemma 8. Let F = (M, {Aq}) be a canonical FDFA and for every progress DFA Aq of F , we
have v1 · · · vn ∈ L(Aq) for any vi ⊆ Σ∗ and n ≥ 1 if p = Aq(v1) = · · · = Aq(vn) and p is an
accepting state of Aq. Then UP(F) = UP(L(B)) where B is the BA constructed from F by the
over-approximation method in Definition 8.

Proof. According to Lemma 6, we have UP(F) ⊆ UP(L(B)). According to Lemma 7, an ω-
word w ∈ UP(L(B)) can be given by a decomposition (u, v1 · · · vn) for some n ≥ 1 such that for
i ∈ [1 · · · n], vi ∈ L(AM(u)) and uvi vM u. By the assumption, we have that v1 · · · vn ∈ L(AM(u)). It
follows that uv1 · · · vn vM u and v1 · · · vn ∈ L(AM(u)), which indicates that u(v1 · · · vn)ω is accepted
by F . Therefore, w ∈ UP(F) and it follows that UP(L(B)) ⊆ UP(F). Thus, we complete the
proof. �

It is easy to see that all three canonical FDFAs depicted in Fig. 2 satisfy Lemma 8. Therefore,
we can also use over-approximation method to construct the BAs accepting aω + abω from them.

7.1. From FDFAs to Limit Deterministic Büchi Automata

Recall that in the under-approximation (respectively, over-approximation) method, we need
first construct an FA P(u,v) = Mu

u × (Au)su
v × (Au)v

v (respectively P(u,v) = Mu
u × (Au)su

v) and then
construct an NBA recognizing L(P(u,v))

ω (respectively, L(P(u,v))ω).
In this section, we show that we can construct a DBA A instead of a BA defined in Defini-

tion 8 recognizing L(P(u,v))
ω (respectively, L(P(u,v))ω), which yields a limit deterministic Büchi

automaton from the conjectured FDFA F .
To make our construction more general, in the following we construct a DBA A with L(A) =

L(D)ω from a DFA D with only one accepting state. One can check that the FAs P(u,v) and P(u,v)
from the under-approximation and the over-approximation methods indeed are DFAs with one
accepting state.

Definition 9. Let D = (Σ,Q, q0, δ, {q f }) be a DFA in which every state q ∈ Q can be reached by
q0 and can reach q f . The DBA A is defined as the tuple (Σ,Q′, q0, δ

′, {[q f]} ∪ {(q f , q) | q ∈ Q})
where Q′ = Q ∪ (Q × Q) ∪ {[q] | q ∈ Q} ∪ {〈q〉 | q ∈ Q} and δ′ is defined as follows where
q, q′ ∈ Q and a ∈ Σ:

23

1.

δ′(q, a) =

δ(q, a) q , q f ;
(δ(q0, a), δ(q f , a)) q = q f ∧ δ(q0, a) , ∅ ∧ δ(q f , a) , ∅;
[δ(q0, a)] q = q f ∧ δ(q0, a) , ∅ ∧ δ(q f , a) = ∅;
〈δ(q f , a)〉 q = q f ∧ δ(q0, a) = ∅ ∧ δ(q f , a) , ∅.

2.

δ′((q, q′), a) =

(δ(q, a), δ(q′, a)) q , q f ∧ δ(q, a) , ∅ ∧ δ(q′, a) , ∅;
〈δ(q′, a)〉 q , q f ∧ δ(q, a) = ∅ ∧ δ(q′, a) , ∅;
[δ(q, a)] q , q f ∧ δ(q, a) , ∅ ∧ δ(q′, a) = ∅;
(δ(q0, a), δ(q′, a)) q = q f ∧ δ(q0, a) , ∅ ∧ δ(q′, a) , ∅;
〈δ(q′, a)〉 q = q f ∧ δ(q0, a) = ∅ ∧ δ(q′, a) , ∅;
[δ(q0, a)] q = q f ∧ δ(q0, a) , ∅ ∧ δ(q′, a) = ∅.

3.

δ′(‖q‖, a) =

‖δ(q, a)‖ q , q f ;
(δ(q0, a), δ(q f , a)) q = q f ∧ δ(q0, a) , ∅ ∧ δ(q f , a) , ∅;
[δ(q0, a)] q = q f ∧ δ(q0, a) , ∅ ∧ δ(q f , a) = ∅;
〈δ(q f , a)〉 q = q f ∧ δ(q0, a) = ∅ ∧ δ(q f , a) , ∅;

where ‖·‖ is either 〈·〉 or [·] in the above definition.

Note that the transition function δ may not be complete, i.e., it happens that δ(q, a) = ∅ for some
q ∈ Q and a ∈ Σ. The reason why we only keep the states of D which can be reached by q0 and
can reach q f rather than considering a complete DFA is that: (1) the number of states in A can
be reduced in this way since |Q′| is quadratic in the number of states of D; (2) it is simple for the
construction to identify the words that cannot be extended to a word in L(D) by observing that
their corresponding runs cannot extend any more. This is because we want A to accept L(D)ω and
the words which cannot be extended to words in L(D) are not valid prefixes of words in L(D)ω

and thus can be omitted in the construction. We omit in the definition of δ′ the cases where there
are no successor states on those transitions. One can check that the definition δ′ is well defined
in the sense that all possible situations are taken account of.

Let U = L(D) and K = L(Dq f
q f) where Dq f

q f is obtained from D by setting q f as the initial state
and the accepting state. We divide the language U ∪K into three parts, namely U \K = {u ∈ Σ∗ |
u ∈ U ∧ u < K}, U ∩ K = {u ∈ Σ∗ | u ∈ U ∧ u ∈ K} and K \ U = {u ∈ Σ∗ | u < U ∧ u ∈ K}. We
will explain the roles of the three languages in the construction below.

Let us consider the run r of A over ω-word uω where u ∈ U. After reading u, r reaches the
accepting state q f and still wants to continue the run. Our goal is to extend the run r so that it
can visit an accepting state of A infinitely often. Since u ∈ U, we can then extend the run r by
going from the state q0 to the state q f again. We try to make r starting from q0 again by starting
at (q0, q f). The first element q0 of the state pair performs the behaviors starting at the initial state
q0, while the second element q f tries to mimic the behaviors starting from the accepting state q f .
If u ∈ U∩K, then r can reach an accepting state (q f , q f) by starting at state (q0, q f). A finite word
u ∈ U \ K may be detected on the run r by observing that some state (q1, q2) = δ′((q0, q f), u1)
on the run such that δ(q1, a) , ∅ while δ(q2, a) = ∅ where u = u1 · a · u2. Thus, in order to track
the remaining behavior of r on the word u2, i.e., the behavior of the left part of the state pair, we
make use of states of the form of [q]. Let [q′1] = δ′((q1, q2), a). We have [q f] = δ′([q′1], u2) since

24

u ∈ U \K. In other words, we use the states in form of [q] to track the behavior of the left part of
the state pair if the behavior of the right part disappears. Similarly, a finite word u = u1 ·a ·u2 ∈ U
with u1 ∈ U∩K and a ·u2 ∈ K \U may be detected in a symmetric way. (q f , q f) = δ′((q0, q f), u1)
since u1 ∈ U ∩ K. We can assume that δ(q0, a) = ∅ while δ(q f , a) , ∅ since a · u2 ∈ K \ U. Let
〈q′2〉 = δ′((q f , q f), a). In such a case, we use the states in form of 〈q〉 to keep track of the rest
behavior of r on u2, i.e., the behavior of the right part of the state pair. We remark that one reason
to distinguish between the states in form of [q] and of 〈q〉 is the acceptance condition since [q f]
is an accepting state while 〈q f 〉 is not. The other reason to distinguish them is that when A is
reading an accepting ω-word w, we can tell that A is reading a fragment word u ∈ U \ K of w
if a state [q] occurs on the run of A while A is reading a fragment word u ∈ K \ U if a state 〈q〉
occurs on the run.

In the construction, every time when a run encounters the states [q f], (q f , q) and 〈q f 〉, we try
to make it mimic the behavior of q0 if possible. In this way, any ω-word w accepted by A can be
rewritten as the concatenation of infinitely many finite words accepted by D, i.e., w = u1 · u2 · · ·
with ui ∈ L(D) for any i ≥ 1.

Theorem 2. Let D be a DFA with one accepting state and A be the DBA constructed from D by
Definition 9. Then L(A) = L(D)ω.

Proof. Recall that U = L(D) and K = L(Dq f
q f). According to Theorem 1, we only consider

ultimately periodic words of ω-regular languages.

1. UP(Uω) ⊆ UP(L(A)). Let w ∈ UP(Uω). w can be written as v · (u0 · u1 · · · ui · · · un)ω for
some n ≥ 0 where v ∈ U∗ and ui ∈ U for any 0 ≤ i ≤ n. The goal is to prove that the
corresponding run r of A over w visits [q f] or (q f , q) for infinitely many times for some
state q ∈ Q. According to the definition of δ′, any state q ∈ Q will not be reached again
once r touches the accepting state q f . Starting from q0 after reading v · u0u1, it will either
stop at the state [q f], 〈q f 〉 or state (q f , q) for some q ∈ Q. In the following, we show that
starting from state [q f], 〈q f 〉 or state (q f , q), it will visit (q f , q) or [q f] at least once and
then stop at either [q f], 〈q f 〉 or state (q f , q) after reading arbitrary u ∈ U.

• If u ∈ U∩K, then δ′([q f], u) = δ′(〈q f 〉, u) = δ′((q0, q f), u) = (q f , q f) and δ′((q f , q), u)
= (q f , p) for some p, q ∈ Q according to Definition 9.

• Otherwise u ∈ U\K. According to Definition 9, upon reading the word u, the run r
at the state [q f] or the state 〈q f 〉 will restart at (q0, q f), while the run r at (q f , q) will
restart at (q0, q). After reading u, the run r will either stop at [q f] or (q f , q′) for some
q′ ∈ Q. The reason why this happens is that starting from the first element q0 of
(q0, q f) and (q0, q), the run r will not visit any states in form of 〈q〉 since u ∈ U \ K.

Therefore, with infinitely many u ∈ U in w, the run r will visit some accepting state in A
infinitely often, which implies that w ∈ UP(L(A)).

2. UP(L(A)) ⊆ UP(Uω). Let w be an ultimately periodic word accepted by A. We assume
that one of its corresponding run r is in the form of q0

u0−→ q1
u1−→ q2

u2−→ · · · qh
uh−→ qh+1

uh+1−−−→
· · · qn−1

un−1−−−→ qn
un−→ qh where ui ∈ Σ+ and qi ∈ {(q f , p) | p ∈ Q} ∪ {[q f], 〈q f 〉} for every

1 ≤ i ≤ n. We also assume that qh is the first accepting state that occurs on the run r
infinitely often where 1 ≤ h ≤ n. We note that there does not exist a state q that belongs
to the set {(q f , p) | p ∈ Q} ∪ {[q f], 〈q f 〉} on the fragment run from qi to qi+1 for any i ≥ 0.
Since w is accepted by A, we have that qh ∈ {[q f], (q f , q)} for some state q ∈ Q.

25

The goal is to prove that w can be written as the form of v0v1v2 · · · vd(vd+1 · · · vm)ω for some
m ≥ d ≥ 0 such that vi ∈ U for every 0 ≤ i ≤ m. In the following, we explain why it is
possible to find those finite words v ∈ U from the given run r.

• There is a fragment run of r from a state qi to a state qi+1 ∈ {[q f]} ∪ {([q f], q) | q ∈ Q}
over the finite word ui, which is depicted as follows.

qi
ui−→ [q f] or qi

ui−→ ([q f], q) (1)

In this situation, we let v = ui and according to the construction, ui is accepted by D,
i.e., v ∈ U.

• If there is a fragment run of r from a state qi to the state qi+1 = 〈q f 〉 on the finite word
ui, we will find all consecutive states 〈q f 〉 behind qi+1, which is depicted as follows.

qi
ui−→ qi+1 = 〈q f 〉 ui+1−−−→ · · · u j−1−−−→ q j = 〈q f 〉

u j−→ q j+1 ∈ {[q f], (q f , q)} (2)

In this case, we let v = ui · ui+1 · · · u j−1. It is easy to verify that v ∈ U according to
the construction.

Therefore, it follows that we can rewrite the ω-word w into a word which is clearly in Uω.
Therefore, for any ultimately periodic word u0(u1)ω ∈ UP(L(A)), there exists an integer
n ≥ 0 such that u0(u1)ω = v0 · · · vi(vi+1 · · · vn)ω and vi ∈ U for every 0 ≤ i ≤ n.

Therefore we complete the proof. �

Figure 12 gives an example for the DBA A constructed from the DFA D.

q0 q f

D
a

b

b

c

q0 q f [q0] [q f] (q f , q f)

〈q f 〉

A
a

b a

b

c

a

b

a

b

c

ba

c

c

b

a

Figure 12: An example for the LDBA construction

Lemma 9 (Size of the DBA). Let D be a DFA with one accepting state and a set Q of states. If
A is the DBA constructed from D by Definition 9, then the number of states in A is in O(|Q|2).

Proof. The proof is trivial since the state set Q′ of A is defined as Q ∪ (Q × Q) ∪ {[q] | q ∈
Q} ∪ {〈q〉 | q ∈ Q}. �

26

Corollary 1 (Sizes of the LDBAs). Let F = (M, {Au}) be an FDFA and B, B be the LDBAs
constructed from F by replacing the BAs in Definition 8 with the DBAs in Definition 9. Let n
and k be the numbers of states in M and the largest progress DFA of F , respectively. Then the
numbers of states of B and B are in O(n3k5) and O(n3k3), respectively.

Proof. According to Definition 8, the sizes of P(u,v) and P(u,v) are in O(nk2) and O(nk) respective-
ly. Thus the sizes of DBAs recognizing N(u,v) and N(u,v) are in O(n2k4) and O(n2k2) respectively
according to Lemma 9. Moreover, the number of the pairs (u, v) are at most nk. Thus we complete
the proof. �

Corollary 2 (Languages of the LDBAs). Let F be an FDFA and Bd, Bd be the LDBAs con-
structed from F by replacing the BAs in Definition 8 with DBAs in Definition 9. Let B and B be
the BAs constructed from F by Definition 8. Then we have that L(B) = L(Bd) and L(B) = L(Bd).

Proof. The proof directly follows the construction for LDBAs. �

8. Counterexample Analysis for the FDFA Teacher

In this section, we first show how to extract valid counterexamples for the FDFA learner
from the counterexamples returned from the BA teacher and then give their correctness proofs
in Sect. 8.1. Since the counterexample analysis procedure makes use of three DFAs, namely
Du$v,D1 andD2 (see Sect. 8.1), we will give the DFA construction forDu$v in Sect. 8.2 and the
constructions forD1 andD2 in Sect. 8.3.

8.1. Counterexample Analysis

During the learning procedure, if we failed the equivalence query for the BA B, the BA
teacher will return a counterexample uvω to the FDFA teacher.

Definition 10 (Counterexample for the FDFA Teacher). Let B ∈ {B, B} be the conjectured BA
and L be the target language. We say that the counterexample uvω is

• positive if uvω ∈ UP(L) and uvω < UP(L(B)), and

• negative if uvω < UP(L) and uvω ∈ UP(L(B)).

Obviously, the above definition is different to the counterexample for the FDFA learner in
Definition 7. Below we illustrate the necessity of the counterexample analysis procedure by an
example.

Example 3. Again, consider the conjectured FDFA F depicted in Fig. 1 for L = aω + bω. Sup-
pose the BA teacher returns a negative counterexample (ba)ω. In order to remove (ba)ω ∈ UP(F),
one has to find a decomposition of (ba)ω that F accepts, which is the goal of the counterexample
analysis. Not all decompositions of (ba)ω are accepted by F . For instance, (ba, ba) is accepted
while (bab, ab) is not.

27

LB

F

uvω

uvω uvω

(a) Under-Approximation

LF
B

uvω

uvω

uvω

(b) Over-Approximation

Figure 13: The Case for Counterexample Analysis

A positive (respectively negative) counterexample uvω for the FDFA teacher is spurious if
uvω ∈ UP(F) (respectively uvω < UP(F)). Suppose we use the under-approximation method
to construct the BA B from F depicted in Fig. 10. The BA teacher returns a spurious positive
counterexample bω, which is in UP(F) but not in UP(L(B)). We show later that in such a case,
one can always find a decomposition, in this example (b, bb), as the counterexample for the
FDFA learner.

Let F = (M, {Au}) be the current conjectured FDFA. In order to analyze the returned coun-
terexample uvω, we define three DFAs below:

• a DFADu$v with L(Du$v) = {u′$v′ | u′ ∈ Σ∗, v′ ∈ Σ+, uvω = u′v′ω},
• a DFAD1 with L(D1) = {u$v | u ∈ Σ∗, v ∈ Σ∗, uv vM u, v ∈ L(AM(u))}, and

• a DFAD2 with L(D2) = {u$v | u ∈ Σ∗, v ∈ Σ∗, uv vM u, v < L(AM(u))}.
Here $ is a letter not in Σ. The constructions for the three DFAs will be introduced in Sect. 8.2
and Sect. 8.3. Intuitively, Du$v accepts every possible decomposition (u′, v′) of uvω; D1 accepts
every decomposition (u′, v′) that is accepted by F ; and D2 accepts every decomposition (u′, v′)
that is not accepted by F yet u′v′ vM u′.

We will use different counterexample analysis procedures for the under-approximation method
and the over-approximation method of the translation from FDFAs to BAs since the analysis for
the returned counterexample has to first identify which kind of the counterexample is as in Fig. 13
and then deals with it accordingly as follows.

Let B be the BA constructed from F by the under-approximation method. Recall that
UP(L(B)) ⊆ UP(F). Figure 13(a) depicts all possible cases of uvω ∈ UP(L(B)) 	 UP(L) by
means of different shapes.

U1 : uvω ∈ UP(L) ∧ uvω < UP(F) (square). The word uvω is a positive counterexample; one
has to find a decomposition (u′, v′) of uvω such that u′v′ vM u′ and v′ ∈ L(AM(u′)). This
can be easily done by taking a word u′$v′ ∈ L(Du$v) ∩ L(D2).

U2 : uvω < UP(L) ∧ uvω ∈ UP(F) (circle). The word uvω is a negative counterexample; one
needs to find a decomposition (u′, v′) of uvω that is accepted by F . This can be done by
taking a word u′$v′ ∈ L(Du$v) ∩ L(D1).

U3 : uvω ∈ UP(L) ∧ uvω ∈ UP(F) (triangle). The word uvω is a spurious positive counterex-
ample. Since uvω ∈ UP(F), there must exist one decomposition of uvω accepted by F , say

28

(u, v). According to Lemma 5, there must exist some k ≥ 1 such that (u, vk) is not accepted
by F . Therefore, we can also use the same method in U1 to get a counterexample (u′, v′).

We can also use the over-approximation method to construct a BA B from F with UP(F) ⊆
UP(L(B)). All possible cases for the counterexample uvω ∈ UP(L(B)) 	 UP(L) is depicted in
Fig. 13(b) by means of different shapes.

O1 : uvω ∈ UP(L) ∧ uvω < UP(F) (square). The word uvω is a positive counterexample that
can be dealt with the same method for case U1.

O2 : uvω < UP(L) ∧ uvω ∈ UP(F) (circle). The word uvω is a negative counterexample that
can be dealt with the same method for case U2.

O3 : uvω < UP(L)∧ uvω < UP(F) (triangle). Here uvω is a spurious negative counterexample.
In such a case, it is possible that we cannot find a valid decomposition out of uvω to refine
F . According to Lemma 7, we may find a decomposition (u′, v′) of uvω and an integer
n ≥ 1 such that v′ = v1v2 · · · vn and for each 1 ≤ i ≤ n, u′vi vM u′ and vi ∈ L(AM(u′)). It
follows that (u′, vi) is accepted by F for every 1 ≤ i ≤ n. If we find some i ∈ [1 · · · n] such
that u′vωi < UP(L), then we return (u′, vi), otherwise, we terminate the learning procedure
and report we are not able to find a suitable counterexample to refine the current FDFA.

From an implementation point of view, we note that determining whether uvω ∈ UP(L) can
be done by posing a membership query MemBA(uvω), and checking whether uvω ∈ UP(F) boils
down to checking the emptiness of L(Du$v) ∩ L(D1).

Lemma 10. Let uvω be the counterexample returned by the BA teacher. For the under-approxima-
tion method, we can always return a valid counterexample (u′, v′) for the FDFA learner. For the
over-approximation method, if counterexample analysis returns a decomposition (u′, v′), then it
is a valid counterexample for the FDFA learner.

Proof. Let M be the leading DFA of the current conjectured FDFA F .

• Case U1 and O1: uvω ∈ UP(L) ∧ uvω < UP(F). According to Definition 7, uvω is a pos-
itive counterexample. We need to return a positive counterexample (u′, v′) for the FDFA
learner in order to make the conjectured FDFA to accept it. The counterexample (u′, v′)
can be found by taking a word u′$v′ ∈ L(Du$v) ∩ L(D2). We first need to prove that
L(Du$v) ∩ L(D2) is not empty. Since uvω < UP(F), we know that all decompositions of
uvω, such as (u, v), are not accepted by F . According to [1], we can always find a normal-
ized factorization (x, y) of (u, v) with respect to M where x = uvi and y = v j from some
0 ≤ i < j such that xy vM x. Therefore (x, y) is also a decomposition of uvω and it is not
accepted by F . In other words, y < L(Aq) where q = M(x) and xy vM x. It follows that
x$y ∈ L(D2) according to Proposition 5 (introduced in Sect. 8.3). Thus, we conclude that
L(Du$v) ∩ L(D2) is not empty. We let u′ = x and v′ = y, and it is easy to verify that (u′, v′)
is a positive counterexample for FDFA learner.

• Case U3: uvω ∈ UP(L) ∧ uvω ∈ UP(F). In this case, uvω is a spurious positive counterex-
ample, which happens when we use the under-approximation method to construct BAs.
We need to return a positive counterexample (u′, v′) for the FDFA learner in order to make
the conjectured FDFA to accept it. The counterexample (u′, v′) can be also found by taking

29

a word u′$v′ ∈ L(Du$v) ∩ L(D2). Again, we need to prove that L(Du$v) ∩ L(D2) is not
empty. Since uvω ∈ UP(F), there exists some decomposition of uvω, say (u, v), which is
accepted by F . According to Lemma 5, there exists some k ≥ 1 such that (u, vk) is not
accepted by F since uvω < UP(L(B)). Moreover, uv vM u since (u, v) is accepted by F . It
follows that uvk vM u, which indicates that u$vk ∈ L(D2) according to Proposition 5 (in-
troduced in Sect. 8.3). Therefore, we conclude that L(Du$v)∩L(D2) is not empty and every
decomposition (u′, v′) taken from u′$v′ ∈ L(Du$v) ∩ L(D2) is a positive counterexample
for FDFA learner.

• Case U2 and O2: uvω < UP(L) ∧ uvω ∈ UP(F). In this case, uvω is a negative counterex-
ample. One has to return a counterexample (u′, v′) such that u′$v′ ∈ L(Du$v) ∩ L(D1) for
the FDFA learner to make the conjectured FDFA to reject it. We first need to prove that
L(Du$v)∩L(D1) is not empty. Since uvω ∈ UP(F), there exists some decomposition (u′, v′)
of uvω that is accepted by F . It follows that u′$v′ ∈ L(D1) according to Proposition 4.
Thus we conclude that L(Du$v) ∩ L(D1) is not empty. Moreover, it is easy to verify that
(u′, v′) is a negative counterexample for the FDFA learner.

• Case O3: uvω < UP(L) ∧ uvω < UP(F). In this case, uvω is a spurious negative counterex-
ample, which happens when we use the over-approximation method to construct BAs. It
is possible that we cannot find a valid decomposition (u′, v′) to refine F . According to the
proof of Lemma 7, one can construct a decomposition (u, v) of uvω such that v = v1·v2 · · · vn

for some n ≥ 1 and for each i ∈ [1 · · · n], we have that vi ∈ L(AM(u)) and uvi vM u. There-
fore, we let u′ = u and v′ = vi if there exists some i ≥ 1 such that uvωi < UP(L). Clearly,
(u′, v′) is a negative counterexample for the FDFA learner. �

8.2. From an ω-word uvω to the DFADu$v

In [37], Calbrix et al. presented a canonical representation L$ = {u$v | u ∈ Σ∗, v ∈ Σ+, uvω ∈
L} for a given ω-regular language L. In principle, we can apply their method to obtain the DFA
Du$v from the given ω-word uvω. However, the number of states in their constructed DFA is
in O(2|u|+|v|). In this section, we present a more effective method to build the DFA Du$v such
that L(Du$v) = {u′$v′ | u′ ∈ Σ∗, v′ ∈ Σ+, u′v′ω = uvω} for a given ω-word uvω. Moreover, the
number of states in our constructed DFADu$v is in O(|v|(|v|+ |u|)). A similar construction for the
DFA Du$v has been proposed in [36], which first computes a regular expression to represent all
possible decompositions of uvω and then constructs the DFA Du$v from the regular expression.
Compared to the construction in [36], ours is a direct construction from uvω toDu$v and we also
give the complexity of the construction.

We first give an example DFA Du$v for the ω-word (ab)ω in Fig. 14. We can see that both
the decomposition (aba, ba) and the decomposition (ababa, bababa) have the same suffix (ba)ω,
which hints us that the second element of a decomposition can be simplified as long as we do not
change the periodic word.

In the following, we denote by u E v to represent that u is a prefix of v, i.e., there exists some
1 ≤ j ≤ |v| such that u = v[1 · · · j]. We denote by u C v if u E v and u , v. We give the notion of
the smallest period of an ω-word w = uvω as follows.

Definition 11 (Smallest period). Let w be an ω-word given by (u, v). We say r is the smallest
period of (u, v) if r E v, rω = vω and for any t C r, tω , rω.

30

q0 q1 q2 q3

q4 q5 q6 q7

$

a

a
b

a
b

$ b
a

b

Figure 14: The DFADu$v for ω-word (aba, ba)

Take (ab)ω as an example: ab and ba are smallest periods of the decomposition (ab, ab) and
the decomposition (aba, ba) respectively. We observe that |ab| = |ba| and ab can be transformed
to ba by shifting the first letter of ab to its tail. Formally, we prove in Lemma 11 that given an
ω-word w, the length of its smallest periods is a constant number no matter what decomposition
of w is given.

Lemma 11. Let w be an ω-word given by two different decompositions (u, v) and (x, y). Let the
smallest periods of (u, v) and (x, y) be r and t, respectively. Then either there exists an integer
j ≥ 2 such that r = t[j · · · n] · t[1 · · · j − 1] with |t| = n or r = t holds.

Proof. According to Definition 11, w = uvω = urω = xyω = xtω. We prove it by contradiction.
Without loss of generality, we assume that |r| > |t|. If |u| = |x|, we conclude that rω = tω since
urω = xtω. It follows that r is not the smallest period of (u, v) since t C r. Hence |r| > |t| cannot
hold in this case. Otherwise if |u| , |x|, we can either prove that r = t or find some j ≥ 2 such that
z = t[j · · · n] · t[1 · · · j − 1] C r and zω = rω in following cases, which also leads to contradiction.
In the following two cases, z = t if k = 1 and otherwise let j = k.

• |u| > |x|. Let k = (|u| − |x|) ⊕ |t| + 1.

• |x| > |u|. Let k = (|r| − (|x| − |u|) ⊕ |r|) ⊕ |t| + 1.

Recall that ⊕ is the standard modular arithmetic operator. We depict the case when |u| > |x| as
follows, where m = |u|.

(u, r) u[1]u[2] · · · u[k]u[k + 1] · · · u[m] · r · r · r · · ·
(x, t) x[1]x[2] · · · x[k]t[1] · · · · ·t[j − 1] · z · z · z · · ·

We have that z C r by the assumption |t| < |r|. However, since zω = rω, we conclude that r is
not the smallest period of (u, v), which leads to contradiction. Thus we complete the proof. �

Lemma 11 shows that if the length of the smallest periods of an ω-word w is n, then there
are exactly n different smallest periods for w. In the following, we define the shortest form for a
decomposition of an ω-word.

Lemma 12. Let w be an ω-word given by (u, v) and y be the smallest period of (u, v). Then there
exist some i ≥ 0, j ≥ 1 and a word x such that u = xyi and v = y j. Moreover, for any x′ E u such
that u = x′yk for some 0 ≤ k ≤ i, we have x′ = xyi−k . We say such (x, y) is the shortest form for
(u, v).

31

Proof. This lemma can be proved by Definition 11 along with the fact that yω = vω. In the
following we will provide the procedure to construct (x, y). To find the shortest form of (u, v),
we need to first find the smallest period y of (u, v), which is illustrated as follows. At first we
initialize k = 1 and then do the following procedure: Let y = v[1 · · · k] and we check whether
there exists some 1 ≤ j ≤ |v| such that v = y j; we return y as the smallest period if we successfully
find such an integer j; otherwise we increase k by 1 and repeat the above procedure. It is easy to
verify that the returned y must be the smallest period of (u, v) such that vω = yω.

We will find the word x of the shortest form in the following procedure: Let x = u and we
will return ε if x = ε or x = y; otherwise we check whether there exists some 1 ≤ k ≤ |x| such
that x = x[1 · · · k] · y; if there does not exist such k, we return x as the final result and otherwise
we set u to x[1 · · · k] and repeat the above procedure. It follows that x is the shortest prefix of u
such that u = xyi for some i ≥ 0. �

Corollary 3 is an immediate result of Lemma 12.

Corollary 3. Let (u1, v1) and (u2, v2) be two decompositions of the ω-word uvω. If (u1, v1) and
(u2, v2) share the smallest period y, then they also have the same shortest form (x, y) such that
u1 = xyi, u2 = xy j for some i, j ≥ 0.

Proof (Sketch). The assumption that (u1, v1) and (u2, v2) have different shortest forms will lead
to the contradiction that u1(v1)ω , u2(v2)ω. �

According to Corollary 3, all decompositions of an ω-word w that share the smallest period y
can be represented as (xyi, y j) for some i ≥ 0, j ≥ 1. In addition, the number of different shortest
forms of w is |y| since there are |y| different smallest periods according to Lemma 11. Thus we
can denote the set of decompositions of w by the set

⋃|y|
k=1{(xkyi

k, y
j
k) | i ≥ 0, j ≥ 1} where (xk, yk)

is the k-th shortest form of w. It follows the construction ofDu$v introduced below.

8.2.1. The Construction of the DFADu$v

Let w be an ω-word given by (u, v) and (x, y) be the shortest form of (u, v). In order to
construct the DFA Du$v, we assume that there is an algorithm constructing a DFA D such that
L(D) = xy∗$y+ for the shortest form (x, y). Let n = |y|. We can construct the DFA Du$v such
that L(Du$v) =

⋃n
i=1 L(Di) and L(Di) = xiy∗i $y+

i for every 1 ≤ i ≤ n where xi = x · y[1 · · · i] and
yi = y[i + 1 · · · n] · y[1 · · · i].

Let m = |x|. We introduce how to construct the DFA D that accepts xy∗$y+ below.

• If m = 0, we define the DFA D as the tuple (Σ, {q0, . . . , q2n}, q0, δ, {q2n}) where δ(qk−1, y[k]) =

qk for every 1 ≤ k ≤ n− 1, δ(qn−1, y[n]) = q0, δ(q0, $) = qn, δ(qn−1+k, y[k]) = qn+k for every
1 ≤ k ≤ n, and δ(q2n, y[1]) = qn+1.

• Otherwise m ≥ 1, D is defined as the tuple (Σ, {q0, . . . , q2n+m}, q0, δ, {qm+2n}) where δ(qk−1,
x[k]) = qk for every 1 ≤ k ≤ m, δ(qm−1+k, y[k]) = qm+k for every 1 ≤ k ≤ n − 1,
δ(qm+n−1, y[n]) = qm, δ(qm, $) = qm+n, δ(qm+n+k−1, y[k]) = qm+n+k for every 1 ≤ k ≤ n,
and δ(qm+2n, y[1]) = qm+n+1.

One can verify that L(D) = xy∗$y+ holds and the number of states of D is at most m + 2n + 1,
i.e., |x| + 2|y| + 1.

Proposition 2. Let Du$v be the DFA constructed from the decomposition (u, v) of the ω-word
uvω. Then L(Du$v) = {u′$v′ | u′ ∈ Σ∗, v′ ∈ Σ+, u′v′ω = uvω}.

32

Proof. • ⊆. This direction is easy since L(Du$v) =
⋃n

i=1 L(Di). We only need to prove that
for any 1 ≤ i ≤ n, u′v′ω = uvω holds if u′$v′ ∈ L(Di). We assume that L(Di) = xiy∗i $y+

i .
Thus for any u′$v′ ∈ L(Di), we have u′ = xiy

j
i and v′ = yk

i for some j ≥ 0, k ≥ 1. It follows
that u′v′ω = uvω since xiyωi = uvω.

• ⊇. We assume that uvω is given by the decomposition (u, v). According to Lemma 12, we
can get the shortest form of (u, v), say (x, y). Let n = |y|. Therefore, Du$v is the DFA such
that L(Du$v) =

⋃n
i=1 L(Di) and L(Di) = xiy∗i $y+

i for each i ∈ [1 · · · n] where xi = x ·y[1 · · · i]
and yi = y[i + 1 · · · n] · y[1 · · · i]. Let (u′, v′) be any decomposition of uvω. We can get the
shortest form of (u′, v′), say (xk, yk) where xk = x·y[1 · · · k] and yk = y[k+1 · · · n]·y[1 · · · k].
In other words, u′$v′ is accepted by Dk, which indicates that u′$v′ ∈ L(Du$v).

Therefore, we complete the proof. �

Proposition 3. Let w be an ω-word given by the decomposition (u, v). Then the number of states
ofDu$v constructed from w is in O(|v|(|u| + |v|).

The number of states of the DFA Di in the construction is at most |u| + 2|r| + 2 where r is
the smallest period of (u, v). Moreover, there are |r| different smallest periods of w. Hence the
number of states ofDu$v is in O(|r|(|r| + |u|)) ∈ O(|v|(|u| + |v|).

8.3. From the FDFA F to the DFAsD1 andD2

In this section, we show how to construct the DFAs D1 and D2 from a given FDFA F =

(M, {Au}). For each progress DFA Au = (Σ,Qu, su, Fu, δu) of F , we define a DFA (Au)c =

(Σ,Qu, su, δu,Qu \ Fu) such that L((Au)c) = Σ∗ \ L(Au). Note that here δu is complete in the sense
that δu(s, a) , ∅ for every s ∈ Qu, a ∈ Σ. In order to construct the DFAs D1 and D2, we define
two DFAs Nu and (Nu)c for each state u of M. For the DFAD1, we define Nu = Mu

u × Au. Hence
L(Nu) = {v ∈ Σ∗ | uv vM u, v ∈ L(Au)}. While for the DFA D2, we define (Nu)c = Mu

u × (Au)c.
Similarly, L((Nu)c) = {v ∈ Σ∗ | uv vM u, v < L(Au)}. Recall that Mu

u is obtained from M by
setting the initial state and the accepting state to u. Formally, the DFA construction is defined as
follows.

Definition 12. Let F = {M, {Au}} be an FDFA where M = (Σ,Q, q0, δ). Let Nu (respectively
(Nu)c) be defined as the tuple (Σ,Qu, su, δu, Fu) for each u ∈ Q. The DFA D1 (respectively D2)
is defined as the tuple (Σ ∪ {$},Q ∪ QAcc, q0, δ ∪ δAcc ∪ δ$, F) where

QAcc =
⋃
u∈Q

Qu, F =
⋃
u∈Q

Fu, δAcc =
⋃
u∈Q

δu, and δ$ = {(u, $, su) | u ∈ Q}.

Intuitively, we use the $ transitions to connect the leading DFA M and the DFAs Nu (respec-
tively (Nu)c). Figure 15 depicts the DFAsD1 andD2 constructed from F of Fig. 1.

Proposition 4. LetF = (M, {Au}) be an FDFA andD1 be the DFA constructed fromF according
to Definition 12. Then L(D1) = {u$v | u ∈ Σ∗, v ∈ Σ∗, uv vM u, v ∈ L(AM(u))}.

Proof. According to Definition 12, it is easy to show that for any u ∈ Σ∗, M(u) = D1(u).
Moreover, for any u, v ∈ Σ∗, we have that Nq(v) = D1(u$v) since D1 is a DFA where q = M(u).
It follows that we only need to prove that Nq(v) is an accepting state ofD1 if and only if (u, v) is
accepted by F .

33

q0 q1 q2

D1
a

b

$
a, b

a

b

q0 q1 q2

D2
a

b

$
a,b

a

b

Figure 15: D1 andD2 for F in Fig. 1

• ⇐. We prove that if (u, v) is accepted by F , then u$v ∈ L(D1). Since (u, v) is accepted by
F , i.e., uv vM u and v ∈ L(Aq), we have that v ∈ L(Nq) where q = M(u). It follows that
Nq(v) is an accepting state. Therefore, u$v ∈ L(D1).

• ⇒. First, we have that L(D1) ⊆ Σ∗$Σ∗ according to Definition 12. For any u, v ∈ Σ∗, if
u$v ∈ L(D1), thenD1(u$v) is an accepting state. It follows that v ∈ L(Nq) where q = M(u).
Since Nq = Mq

q × Aq, we have that v ∈ L(Mq
q) and v ∈ L(Aq), which implies that uv vM u

and v ∈ L(Aq). Thus, we conclude that (u, v) is accepted by F .

�

Proposition 5. LetF = (M, {Au}) be an FDFA andD2 be the DFA constructed fromF according
to Definition 12. Then L(D2) = {u$v | u ∈ Σ∗, v ∈ Σ∗, uv vM u, v < L(AM(u))}.

Proof. Similar to the proof of Proposition 4, for any u ∈ Σ∗, we have M(u) = D2(u). Moreover,
for any u, v ∈ Σ∗, we have that (Nq)c(v) = D2(u$v) sinceD2 is a DFA where q = M(u).

• ⇐. Assume that uv vM u and v < L(Aq) where q = M(u). On the one hand, v ∈ L(Mq
q)

since uv vM u. On the other hand, v ∈ L((Aq)c) since v < L(Aq). Therefore, v ∈ L((Nq)c)
since (Nq)c = Mq

q × (Aq)c. It follows that (Nq)c(v) = D2(u$v) is an accepting state. There-
fore, u$v ∈ L(D2).

• ⇒. First, we have that L(D2) ⊆ Σ∗$Σ∗ according to Definition 12. For any u, v ∈ Σ∗,
if u$v ∈ L(D2), then D2(u$v) is an accepting state. It follows that v ∈ L((Nq)c) where
q = M(u). Since (Nq)c = Mq

q × (Aq)c, we have that v ∈ L(Mq
q) and v ∈ L((Aq)c), which

implies that uv vM u and v < L(Aq).

Proposition 6. Let n be the number of states of M and k be the number of states in the largest
progress DFA of F . The number of states inD1 (respectivelyD2) is in O(n + n2k).

Proof. It directly follows from Definition 12. �

9. Correctness and Complexity Analysis

In this section, we first discuss the correctness of the tree-based FDFA learning algorithm
in Sect 9.1 and then present the complexity of the algorithm in Sect. 9.2. Together with the
correctness of the BA construction and counterexample analysis, it follows our main result, i.e.,
Theorem 4 in Sect. 9.2.

34

9.1. Correctness of the Tree-based FDFA Learning Algorithm

In this section, we let L be the target ω-regular language and we fix an FDFA F = (M, {Au})
and their corresponding classification tree structures (T , {Tu}). Lemma 13 establishes the cor-
rectness of our tree-based learning algorithm for the periodic progress trees and the leading tree.

Lemma 13. Let L be the target language. The tree-based learning algorithm for L will never
classify two finite words that belong to the same equivalence class into two different terminal
nodes in the leading tree and in the periodic progress trees.

Proof. We prove by contradiction. Suppose there are two finite words x1, x2 ∈ Σ∗ that are in
the same equivalence class but they are currently classified into different terminal nodes in a
classification tree γ.

• γ = T is the leading tree. By assumption, we have the premise x1 vL x2. Suppose
x1 and x2 have currently been assigned to two different terminal nodes t1 and t2. Thus
we can find the least common ancestor n of t1 and t2 from T with Ln(n) = (y, v) being
an experiment to distinguish x1 and x2. Assume without loss of generality that t1 and t2
are in the left and the right subtrees of n respectively. Therefore, TE(x1, (y, v)) = F and
TE(x2, (y, v)) = T. It follows that x1(yv)ω < UP(L) and x2(yv)ω ∈ UP(L), which implies
that x1 6vL x2. Contradiction.

• γ = Tu is a progress tree for an intermediate periodic FDFA. Similarly, we have the
premise x1 ≈u

P x2. We assume that x1 and x2 have been assigned to two different terminal
nodes t1 and t2 of Tu. Similarly, we find the least common ancestor n of t1 and t2 from Tu

with Ln(n) = v being an experiment to distinguish x1 and x2. Without loss of generality,
we assume that t1 and t2 are in the left and the right subtrees of n respectively. Therefore,
TE(x1, v) = F and TE(x2, v) = T. It follows that u(x1v)ω < UP(L) and u(x2v)ω ∈ UP(L),
which implies that x1 6≈u

P x2. Contradiction. �

We now move onto the learning algorithm for the syntactic FDFA and the recurrent FDFA
of L. Recall that in Definition 4 and 5, x ≈u

S y and x ≈u
R y are defined according to the right

congruence vL. In other words, the syntactic progress trees and the recurrent progress tress are
learned according to current leading DFA M. Therefore, the progress trees can be correctly
constructed if vM is already consistent with vL. Recall in the proof of Proposition 1 that vM is
consistent with vL if and only if for any x1, x2 ∈ Σ∗, x1 vM x2 ⇐⇒ x1 vL x2. Lemma 14 gives
an important property for the correctness of the tree-based learning algorithm for the syntactic
and the recurrent FDFAs.

Lemma 14. Assume that the learner is learning the target language L. The tree-based algorithm
will never classify two finite words x1, x2 ∈ Σ∗ that belong to the same equivalence class into two
different terminal nodes in the syntactic progress trees and the recurrent progress trees if vM is
consistent with vL.

Proof. Note that the current progress trees in the syntactic and the recurrent FDFAs are con-
structed with respect to the current leading DFA M in the learning procedure. Let Tu be the
progress tree for a state u of M. We prove the lemma by contradiction.

35

• Tu is a progress tree for an intermediate syntactic FDFA. By assumption, we have x1 ≈u
S x2.

Assume that x1 and x2 have been assigned to two different terminal nodes t1 and t2 of Tu

respectively. Therefore, we can find the least common ancestor n of t1 and t2 from Tu with
Ln(n) = v being an experiment to distinguish x1 and x2. According to the definition of
TE in the syntactic FDFA defined in Sect. 6.2, we let d1 := TE(x1, v) = (M(ux1),m1) and
d2 := TE(x2, v) = (M(ux2),m2) where m1,m2 ∈ {A, B,C}. d1 , d2 since t1 and t2 are in
different subtrees of n. It follows that M(ux1) , M(ux2) or m1 , m2. We show d1 = d2 by
the assumption that M is consistent with vL in the following cases.

– Assume that M(ux1) , M(ux2). According to the definition of ≈u
S in Definition 4,

ux1 vL ux2 since x1 ≈u
S x2 . It immediately follows that M(ux1) = M(ux2) since vM

is consistent with vL. Contradiction.

– Assume that m1 , m2. Similarly, ux1 vL ux2 since x1 ≈u
S x2. It follows that M(ux1) =

M(ux2) since vM is consistent with vL. Moreover, we have that M(ux1v) = M(ux2v)
for any v ∈ Σ∗ since M is a DFA. We discuss the equality of m1 and m2 for an
experiment v ∈ Σ∗ in the following two cases.
(i) Assume that u = M(ux1v). Therefore ux1v vL u since vM is consistent with vL.
It immediately follows that u(x1v)ω ∈ UP(L) ⇐⇒ u(x2v)ω ∈ UP(L) according to the
fact that x1 ≈u

S x2. Moreover, we have u = M(ux2v) since ux1 vL ux2. Therefore, it
follows that m1,m2 ∈ {A, B} according to the definition of TE in Sect. 6.2. W.l.o.g.,
we let m1 = A and m2 = B, which implies that u(x1v)ω ∈ UP(L) while u(x2v)ω <
UP(L). Contradiction.
(ii) Assume that u , M(ux1v). According to the definition of TE in Sect. 6.2, we
have m1 = m2 = C. It follows that d1 = d2 since M(ux1) = M(ux2). Contradiction.

Therefore, t1 and t2 will be the same terminal node if vM is consistent with vL.

• Tu is a progress tree for an intermediate recurrent FDFA. This proof is analogous to the
proof for the syntactic FDFA. We first have premise x1 ≈u

R x2. Assume that x1 and x2 have
been assigned to two different terminal nodes t1 and t2 of Tu respectively. Thus we can
find the least common ancestor n of t1 and t2 from Tu with Ln(n) = v being an experiment
to distinguish x1 and x2. Let d1 := TE(x1, v) and d2 := TE(x2, v) where d1, d2 ∈ {F,T}.
d1 , d2 since t1 and t2 are in different subtrees of n. W.l.o.g., we let d1 = F and d2 = T.
According to the definition of TE in Sect. 6.2, we have u = M(ux2v) and u(x2v)ω ∈ UP(L)
since d2 = T. It follows that ux2v vL u since vM is consistent with vL. Moreover, we have
that u = M(ux1v) and u(x1v)ω ∈ UP(L) since x1 ≈u

R x2. According to the definition of TE,
we have d1 = T. Contradiction.

Consequently, we can conclude that the classification of equivalence classes in the progress trees
will be correct if vM is consistent with vL. �

We have proved that the tree-based learning algorithm will not do any “bad” things, i.e., it
will not classify any two different words that belong to the same equivalence class into different
terminal nodes if vM is currently consistent with vL. Recall in Lemma 4 that the tree-based
algorithm will do some “good” things whenever receiving a counterexample (u, v) from the FDFA
teacher, i.e., there will be a new state added to either the leading DFA M or to a progress DFA
AM(u) after each refinement step. In other words, Lemma 4 guarantees that the learning algorithm

36

will either make progress for the leading DFA or the corresponding progress DFA after every
refinement.

However, the learning algorithm may make progress for the progress DFAs in a wrong direc-
tion when vM is not consistent with vL. More precisely, according to Lemma 14, it happens that
in the progress syntactic trees and the recurrent progress trees, two finite words that belong to
the same equivalence class can be classified into different terminal nodes if vM is not consistent
with vL. One worry is that if the FDFA teacher always chooses to refine the progress DFAs when
vM is not consistent with vL, the learning algorithm may not terminate. Lemma 15 shows that
the learning algorithm will terminate since the number of equivalence classes of the progress
DFAs with respect to current leading DFA M is finite. More precisely, if we fix a leading DFA
M and a state u of M, we are actually learning a DFA defined by a right congruence ≈u

S ′ when
learning the progress DFA Au of the target syntactic FDFA of L. We define x ≈u

S ′ y if and only if
M(ux) = M(uy) and for any v ∈ Σ∗, if M(uxv) = u, then u(xv)ω ∈ L ⇐⇒ u(yv)ω ∈ L. One can
easily verify that x ≈u

S ′ y is a right congruence and that if vM is consistent with vL, then x ≈u
S ′ y

is equivalent to x ≈u
S y.

Lemma 15. Let M be a leading DFA with a set of states Q. For every state u of M, the index of
≈u

S ′ is bounded by |Q| · | ≈u
P |.

Proof. Recall that we use a word to represent a state in M. Here u is a representative word of
the state it represents. Let x ∈ Σ∗. We show how to classify x into an equivalence class of ≈u

S ′
in the following. According to the definition of ≈u

S ′ , we first find the state q = M(ux). Note that
for every y ∈ Σ∗ such that q , M(uy), x and y must not belong to the same equivalence class.
Therefore, x can be first classified into one of |Q| classes since the number of possible choices
of q is |Q|. Further, in order to distinguish x from a finite word y such that q = M(uy), we have
to check whether for ∀v ∈ Σ∗, if M(uxv) = u, u(xv)ω ∈ L ⇐⇒ u(yv)ω ∈ L holds, i.e., whether
x ≈u

P y holds. Thus we can use (q, [x]≈u
P
) ∈ Q×Σ∗/≈u

P
as a label to represent the equivalence class

of Σ∗/≈u
S ′

which x belongs to. Therefore, it follows that the index of the right congruence ≈u
S ′ is

at most |Q| · | ≈u
P |. �

Similarly, we also have a right congruence ≈u
R′ for the recurrent FDFA learning. We define

x ≈u
R′ y if and only if for every v ∈ Σ∗, M(uxv) = u ∧ u(xv)ω ∈ L ⇐⇒ M(uyv) = u ∧ u(yv)ω ∈ L.

Since x ≈u
S ′ y implies x ≈u

R′ y, it follows that | ≈u
R′ | is smaller than | ≈u

S ′ |. The implication from
x ≈u

S ′ y to x ≈u
R′ y can be easily established as follows: firstly, we have that u(yv)ω ∈ L by the

assumption that uxv vM u ∧ u(xv)ω ∈ L and x ≈u
S ′ y; secondly, together with the assumption

uxv vM u and the fact that ux vM uy holds since x ≈u
S ′ y, we conclude that uyv vM u since M is

a DFA. Therefore, a similar result for the recurrent FDFA follows in Lemma 16.

Lemma 16. Let M be a leading DFA with a set of states Q. For every state u of M, the index of
≈u

R′ is bounded by |Q| · | ≈u
P |.

Theorem 3. The tree-based FDFA learning algorithm will terminate and can learn the three
canonical FDFAs if there is an FDFA teacher answering membership and equivalence queries
about the target canonical FDFA of L.

Proof (Sketch). The tree-based learning algorithm for the periodic FDFA will terminate and
learn an FDFA F such that UP(F) = UP(L) since the number of states in F is finite. This result
can be justified by Lemmas 13 and 4.

37

According to Lemma 13 and Lemma 14, the tree-based algorithm for the syntactic and the
recurrent FDFAs can classify finite words correctly if vM is consistent with vL. If vM is not
consistent with vL, the FDFA teacher will be able to return a counterexample to refine current
M. If the leading DFA has been refined, the algorithm for the syntactic and the recurrent FDFAs
will learn all progress DFAs from scratch with respect to the new leading DFA M. The learning
procedure for the progress DFAs will terminate, which is justified by Lemmas 4, 15 and 16. At
some point, vM will be consistent with vL since the number of states in the conjectured FDFA
increases after every refinement. Thus, the learning algorithm will terminate since the numbers
of states in the corresponding syntactic and recurrent FDFAs of L are both finite. Therefore, we
complete the proof. �

9.2. Complexity of the Tree-based Learning Algorithm

In this section, we denote by F = (M, {Au}) the periodic FDFA of the target ω-regular lan-
guage L. Unless stated otherwise, we let n be the number of states in the leading DFA M and k
be the number of states in the largest progress DFA Au. We remark that F is uniquely defined for
L according to Definition 3 and the table-based algorithm needs the same amount of equivalence
queries as the tree-based one in the worst case. We define the length of a decomposition (u, v)
as the sum of the lengths of u and v, i.e., |(u, v)| = |u| + |v|. In the following, we first discuss the
complexity of the operations of the FDFA teacher in Proposition 7 and then consider the com-
plexity of the operations of the FDFA learner in Theorems 4 and 5. At last, we will present the
main result of this paper in Theorem 6.

Proposition 7. Let F = (M, {Au}) be the current conjectured FDFA. Assume that the counterex-
ample uvω returned by the BA teacher is given by the decomposition (u, v). Then

• the time and space complexity for building the BAs B, B and the LDBAs Bd and Bd are in
O(n2k3),O(n2k2),O(n3k5) and O(n3k3) respectively, and

• for the under approximation method, the time and space complexity for analyzing the
counterexample uvω are in O(n2k · (|v|(|v| + |u|)), while for the over approximation method,
the time and space complexity for analyzing uvω are in O(n2k2 · (|v|(|v| + |u|)) and in
O(n2k(|v|(|v| + |u|)) respectively.

Proof. • This is an immediate result of Lemma 6 and Corollary 1.

• According to Propositions 3 and 6, the numbers of states in the DFAs D1 and D2 are
both in O(n + n2k) and the number of states inDu$v is at most |v|(|v|+ |u|) since (u, v) is the
returned decomposition of the counterexample uvω. Note that except for the case O3 in the
over-approximation method,Du$v,D1 andD2 are used in counterexample analysis. Thus,
except for the case O3, the time and space complexity for the counterexample analysis are
both in O(n2k · (|v|(|v| + |u|))). When we analyze the spurious negative counterexample,
i.e., the case O3, the time and space complexity are in O(nk(n + nk) · (|v|(|v| + |u|))) and
O((n + nk) · (|v|(|v| + |u|))) respectively according to Lemma 7. Since the time and space
complexity for case O1 and the case O2 are both in O(n2k · (|v|(|v|+ |u|)), it follows that the
time and space complexity for the over-approximation method are in O(n2k2 · (|v|(|v|+ |u|))
and in O(n2k(|v|(|v| + |u|)) respectively.

Therefore, we complete the proof. �

38

Theorem 4 (Query Complexity). Let (u, v) be the longest counterexample returned from the
FDFA teacher. The number of equivalence queries needed for the tree-based FDFA learning
algorithm to learn the periodic FDFA of L is in O(n + nk), while the number of membership
queries is in O((n + nk) · (|u| + |v| + (n + k) · |Σ|)).

For both the syntactic and the recurrent FDFAs, the number of equivalence queries needed
for the tree-based FDFA learning algorithm is in O(n + n3k), while the number of membership
queries is in O((n + n3k) · (|u| + |v| + (n + nk) · |Σ|)).

Proof. Theorem 4 can be justified according to Lemma 13, Lemma 15, Lemma 16 and Theo-
rem 3. Recall that we let F = (M, {Au}) be the unique periodic FDFA of L. The number of states
of M is n and k is the number of the largest progress DFA of F .

Let (u, v) be a counterexample from the FDFA teacher. The number of membership queries
needed for the FDFA learner to find the right experiment to refine the leading DFA is at most
|u| and that for refining the corresponding progress DFA is at most |v|. Therefore, the number
of membership queries used in finding the right experiment for the FDFA learner is bounded by
|u| + |v|. We remark that one can also reduce the number of membership queries used by the
FDFA learner to log(|u| + |v|) since one can use a binary search instead of the linear search in
Sect. 6.2 to find a suffix of u or v as an experiment for refinement. Basically, the linear search in
Sect. 6.2 tries to find a position in u (respectively v) where the result of the experiment function
TE differs from that of the previous position. Therefore, by repeatedly dividing the sequence of
positions in half such that the results of the first position and the last position still differ, we only
need log(|u| + |v|) queries to find the right position.

Membership queries are also needed in constructing the corresponding DFA after a classi-
fication tree has been refined. Assume that the new added terminal node is labeled by p, the
terminal node to be refined is labeled by q and the experiment is e. We only need to ask mem-
bership queries to compute the successors of p and update the successors of the predecessors of
q as follows. (i) Computing the successors of p needs to calculate δ(p, a) for every a ∈ Σ, which
requires |Σ| · h membership queries where h is the height of the classification tree. (ii) Updating
the successors of the predecessors of q needs to calculate TE(s, e) for every state s and a ∈ Σ

for which currently we have δ(s, a) = q; this requires at most |Σ| · m membership queries where
m is the number of states in M or AM(u). Since the height of the classification tree is at most m,
the number of membership queries needed for constructing the new conjectured DFA is at most
2 · m · |Σ|. It follows that for the tree-based algorithm, the number of membership queries used
in the counterexample guided refinement is bounded by |u| + |v| + 2m · |Σ|. We remark that in
the table-based algorithm, the number of membership queries used in the counterexample guided
refinement is bounded by |u| + |v| + m + |Σ| · m + |Σ|, where |u| + |v| membership queries are used
for finding the experiment and m + (m + 1)|Σ| membership queries are used to fill the table.

The tree-based algorithm for the three canonical FDFAs are as follows.
During the learning procedure for the periodic FDFA, when receiving a counterexample for

the FDFA learner, the tree-based algorithm either adds a new state into the leading DFA or into
a progress DFA. Thus, the number of equivalence queries is bounded by n + nk since the number
of states in the target periodic FDFA of L is at most n + nk. Note that m ≤ n + k since we
will either refine the leading DFA or a progress DFA whenever receiving a counterexample.
Therefore, the number of membership queries needed for learning the periodic FDFA is bounded
by (n + nk) · (|u| + |v| + 2(n + k) · |Σ|) ∈ O((n + nk) · (|u| + |v| + (n + k) · |Σ|)) in the worst case.

Now we consider the learning algorithm for the syntactic and the recurrent FDFAs. On re-
ceiving a counterexample for the FDFA learner, the tree-based algorithm will first decide whether

39

to refine the leading DFA or a progress DFA. If it decides to refine the leading DFA, we need
to initialize all progress trees as a single node labeled by ε again. Thus the number of states in
the progress DFAs of the conjectured FDFA may decrease at that point. Otherwise it decides to
refine a progress DFA and the number of states of the conjectured FDFA will be increased by
one.

In the worst case, the FDFA learner will try to learn the progress DFAs as much as possible.
Therefore, if the current leading DFA has m states, the learner will learn a DFA is of size at most
m · k according to Lemmas 15 and 16 for every progress DFA. Once all progress trees cannot be
refined any more, either the learning task finishes or the FDFA teacher returns a counterexample
to refine the leading DFA. For the latter case, the number of states in the leading DFA will
increase by one, i.e., m + 1, and the learner has to redo the learning work for all progress trees
from scratch. The number of states of all progress DFAs in the new conjectured FDFA is bounded
by (m + 1)2 · k. Assume that the learner will keep learning the target FDFA in this way. Then the
number of equivalence queries needed for the tree-based algorithm is bounded by (1 + 1 · 1 · k) +

(1 + 2 · 2 · k) + · · · (1 + (n− 1) · (n− 1) · k) + (1 + n · n · k) ∈ O(n + n3k). Similarly, in the syntactic
and the recurrent FDFAs, we have that m ≤ n + nk since the number of states in a progress DFA
is bounded by nk. It follows that the number of membership queries needed for the algorithm is
in O((n + n3k) · (|u| + |v| + 2(n + nk) · |Σ|)) ∈ O((n + n3k) · (|u| + |v| + (n + nk) · |Σ|)) in the worst
case. �

Theorem 5 (Space Complexity). Let n be the number of states in the leading DFA M and k be
the number of states in the largest progress DFA. For the tree-based learning algorithm of the
three canonical FDFAs, the space required to learn the leading DFA is in O(n). For the periodic
FDFA, the space required for the tree-based algorithm to learn each progress DFA is in O(k),
while for the syntactic and the recurrent FDFAs, the space required is in O(nk). For the table-
based learning algorithm of the three canonical FDFAs, the space required to learn the leading
DFA is in O((n + n · |Σ|) · n). For the periodic FDFA, the space required for the table-based
algorithm to learn each progress DFA is in O((k + k · |Σ|) · k), while for the syntactic and the
recurrent FDFAs, the space required is in O((nk + nk · |Σ|) · nk).

Proof. As we mentioned in Sect. 5, the FDFA learner can be viewed as a learner consisting of
many component DFA learners. Assume that the number of the states in the target DFA is m for a
component DFA learner. For the table-based component DFA learner, the size of the observation
table is in O((m + m · |Σ|) · m) since there are m + m · |Σ| rows and at most m columns in the
observation table in the worst case. In contrast, for the tree-based component DFA learner, the
number of nodes in the classification tree is in O(m) since the number of terminal nodes in the
classification tree is m and the number of internal nodes is at most m − 1.

For the periodic FDFA, the number of states in the conjectured FDFA will increase after each
refinement step. Thus, it is easy to conclude that the space required for the leading DFA is inO(n)
if we use the tree-based learning algorithm and the space required by the table-based algorithm
is in O((n + n · |Σ|) · n). Similarly, the space required by the tree-based learning algorithm to
learn each progress DFA is in O(k), while for the table-based algorithm, the space required is in
O((k + k · |Σ|) · k).

For the syntactic and the recurrent FDFAs, the component DFA learner for the leading DFA
is the same as the one for the periodic FDFA. Thus the space required by the table-based and the
tree-based algorithms remains separately the same. For learning the progress DFAs, the number
of states in each progress DFA is at most nk according to Lemmas 15 and 16. Therefore, for the

40

table-based algorithm, the space required is in O((nk + nk · |Σ|) · nk). While for the tree-based
algorithm, the space required to learn each progress DFA is in O(nk). �

Theorem 6 (Correctness and Termination). The BA learning algorithm based on the under-
approximation method always terminates, and returns a BA accepting the unknown ω-regular
language L. If the BA learning algorithm based on the over-approximation method terminates
without reporting an error, it returns a BA accepting the ω-regular language L. Our BA learning
algorithms run in polynomial time w.r.t. the number of states of the periodic FDFA of L.

Proof. If the algorithm uses the under-approximation method to construct BAs, the learning
algorithm has to first learn a canonical FDFA to get a right conjectured BA in the worst case. If
the BA learning algorithm based on the over-approximation method terminates without reporting
an error when finding a counterexample for the FDFA learner in case O3, the output BA B must
accept L since B has passed the equivalence query. One can verify that all the operations needed
for our BA learning algorithm run in polynomial time in the number of states of the periodic
FDFA of L. This theorem is justified by Lemma 2, Lemma 6 and Theorem 3. �

By Theorem 6, our BA learner based on the under-approximation method has to learn a canonical
FDFA of L to obtain a BA of L in the worst case. In practice, the learning algorithm very often
finds a BA accepting L before converging to a canonical FDFA.

10. Experimental results

All the learning algorithms proposed in this work are implemented in the ROLL library [42]
(http://iscasmc.ios.ac.cn/roll). In the ROLL library, all DFA operations are delegated
to the dk.brics.automaton package, and we use the RABIT tool [55, 56] to check the equivalence
of two BAs. We evaluate the performance of our learning algorithms using the smallest BAs
corresponding to all the 295 LTL specifications available in Büchi Store[43], where the numbers
of states in the BAs range from 1 to 17 and the numbers of transitions from 0 to 123. Besides
this, we also evaluate our algorithms on 20 BAs whose languages cannot be expressed by LTL
formulas where the numbers of states range from 2 to 21 and the numbers of transitions from
3 to 41. The machine we used for the experiments is a 2.5 GHz Intel Core i7-6500 with 4 GB
RAM. We set the timeout period to 30 minutes.

Experiments on 295 LTL specifications using conversions from FDFAs to BAs. The overall ex-
perimental results for 295 LTL specifications are given in Table 1. In this section, we use L$ to
denote the ω-regular learning algorithm in [36], and LPeriodic, LSyntactic and LRecurrent to represent
the periodic, syntactic and recurrent FDFA learning algorithm introduced in Sect. 5 and 6. From
the table, we can find the following facts: (1) The BAs learned from L$ have more states but few-
er transitions than their FDFA based counterparts. (2) LPeriodic uses fewer membership queries
compared to LSyntactic and LRecurrent. The reason is that LSyntactic and LRecurrent need to restart
the learning of all progress DFAs from scratch when the leading DFA has been modified. (3)
Tree-based algorithms always solve more learning tasks than their table-based counterparts. In
particular, the tree-based LSyntactic with the under-approximation method solves all 295 learning
tasks.

41

http://iscasmc.ios.ac.cn/roll

Table 1: Overall experimental results for 295 BAs of LTL specifications. We show the results of 285 cases for which
all algorithms can finish the BA learning within the timeout period and list the number of cases cannot be solved (#Un-
solved). The mark n∗/m denotes that there are n cases terminate with an error (in the over-approximation method) and
m − n cases run out of time. The rows #St., #Tr., #MQ, and #EQ, are the numbers of states, transitions, membership
queries, and equivalence queries. Timeeq is the time spent in answering equivalence queries and Timetotal is the total
execution time. EQ(%) is the percentage of the time for the equivalence queries in the total running time.

Models L$ LPeriodic LSyntactic LRecurrent

Struct.&
Approxi. Table Tree Table Tree Table Tree Table Tree

under over under over under over under over under over under over
#Unsolved 4 2 3 0/2 2 0/1 1 4*/5 0 3*/3 1 0/1 1 0/1
#St. 3078 3078 2481 2468 2526 2417 2591 2591 2274 2274 2382 2382 2400 2400
#Tr. 10.6k 10.3k 13.0k 13.0k 13.4k 12.8k 13.6k 13.6k 12.2k 12.2k 12.7k 12.7k 12.8k 12.8k
#MQ 105k 114k 86k 85k 69k 67k 236k 238k 139k 139k 124k 124k 126k 126k
#EQ 1281 2024 1382 1351 1950 1918 1399 1394 2805 2786 1430 1421 3037 3037
Timeeq(s) 146 817 580 92 186 159 111 115 89 91 149 149 462 465
Timetotal(s) 183 861 610 114 213 186 140 144 118 120 175 176 499 501
EQ(%) 79.8 94.9 95.1 80.7 87.3 85.5 79.3 79.9 75.4 75.8 85.1 84.6 92.6 92.8

0 10 20 30 40 50

0

50

100

150

200

Number of Step

N
um

be
ro

fS
ta

te
s

L$

LPeriodic

LSyntactic

LRecurrent

Figure 16: Growth of state counts in BA

In the experiment, we observe that table-based L$ has 4 cases that cannot be finished within
the timeout period, which is the largest number among all learning algorithms3. That’s because
for these 4 cases, the average time required for L$ to get an equivalence query result is much
longer than the FDFA algorithms. After a careful examination, we find that the growth rate of
the size (number of states) of the conjectured BAs generated by table-based L$ is much faster
than that of table-based FDFA learning algorithms. In Fig. 16, we illustrate the growth rate of
the size (number of states) of the BAs generated by each table-based learning algorithm using
one learning task that cannot be solved by L$ within the timeout period. The figures of the other
three learning tasks show the same trend and hence are omitted. Another interesting observation
is that the sizes of BAs generated by LSyntactic can decrease in some iterations because the leading
DFA is refined at those iterations and thus the algorithms have to redo the learning of all progress
automata from scratch.

To our surprise, in our experiment, the size of BAs B produced by the overapproximation
method is not much smaller than the BAs B produced by the underapproximation method. Re-
call that the automaton B comes from the product of three DFAs Mu

u × (Au)su
v × (Au)v

v while

3Most of the unsolved tasks using the over-approximation method are caused by the situation that the FDFA teacher
cannot find a valid counterexample for refinement.

42

the automaton B comes from the product of only two DFAs Mu
u × (Au)su

v (Sect. 7). The rea-
son for the above observations is that very often the language of the product of three DFAs is
equivalent to the language of the product of two DFAs, thus we get the same DFA after apply-
ing DFA minimizations. We note that the languages of these two products are not necessarily
equivalent in theory. Nevertheless, the over-approximation method is still helpful for LPeriodic

and LRecurrent. For LPeriodic, the over-approximation method solves more learning tasks than the
under-approximation method. For LRecurrent, the over-approximation method solves one tough
learning task that is not solved by the under-approximation method.

As we mentioned at the end of Sect. 6.2, a possible optimization is to reuse the counterexam-
ples and to avoid equivalence queries as much as possible. The optimization helps the learning
algorithms to solve 9 more cases that were not solved before.

100 101 102

100

101

102

|Q| of NBAs

|Q
|o

fL
D

B
A

s

Over-Approximation

100 101 102

100

101

102

|Q| of NBAs

|Q
|o

fL
D

B
A

s

Under-Approximation

Figure 17: Comparison of the number of states between NBAs and LDBAs learned from tree-based algorithms

Experiments on 295 LTL specifications using conversions from FDFAs to LDBAs. The number
of states of a LDBA constructed from an FDFA F by Definition 9 is quadratically larger than
that in the corresponding NBA constructed by Definition 8. Therefore, in order to learn a LDBA
we can construct NBAs for the equivalence queries and construct a LDBA from the FDFA for
final result once the learning task succeeds. We use this strategy to learn the LDBAs from the
BAs of the Büchi Store. Since the learning procedure is the same as usual except we construct a
LDBA from the final FDFA, we only compare the number of states between NBAs and LDBAs
learned from the tree-based algorithms in Fig. 17. The numbers of states of NBAs and LDBAs
learned from table-based algorithms share the same trend and thus the comparison is omitted.
From Fig. 17, we can see that most of points are above the diagonal, which indicates the number
of states in LDBAs are larger than those in NBAs when we consider large BAs. This is because
the number of states of LDBAs are quadratically larger than those of NBAs. We also observe
that there are a lot of points which are below the diagonal. The reason is that the construction of
LDBAs in Definition 9 requires first remove all states that cannot reach the accepting states in
the DFA, while the construction of BAs in Definition 8 does not use the same removal operation.

Experiments on 20 BAs using conversions from FDFAs to BAs. It is known that LTL formulas
can only express a strict subset of the ω-regular languages [57]. For instance, the language
Lk = {w ∈ {a, b}ω | a appears after every k letters in w} where k ≥ 1, which can be expressed as

43

0 2 4 6 8 10 12 14 16

0

1,000

2,000

3,000

4,000

Number of solved cases

R
un

ni
ng

tim
e

(s
ec

s)

L$
table

L$
tree

LPeriodic
table

LPeriodic
tree

LSyntactic
tree

LSyntactic
table

LRecurrent
table

LRecurrent
tree

Figure 18: Experiments for 20 BAs whose languages are not recognizable with LTL formulas

the ω-regular expression ((a+b)k ·a)ω and thus recognized by a BA , but not by any LTL formula.
This is because an LTL formula for Lk, if exists, would need to count the number of letters
before a, which is clearly beyond the expressive power of LTL. To show that our algorithms are
also efficient in learning ω-regular languages that cannot be recognized by LTL formulas, we
conducted experiments on 20 BAs Bk accepting Lk = ((a + b)k · a)ω with 1 ≤ k ≤ 20; each Bk has
k + 1 states and the results are depicted in Fig. 18 showing how the running time of each learning
algorithm evolves with respect to the number of solved cases. Note that we have excluded in
Fig. 18 the running time for the cases that cannot be solved within 30 minutes. We note that only
the under-approximation method is used here for constructing BAs since learning algorithms
based on over-approximation often fail to obtain a valid counterexample for FDFAs due to their
incompleteness. We summarize our observations below. Among all learning algorithms, LSyntactic

table

and LSyntactic
tree complete the most number of learning tasks (15 BAs). Moreover, the set of cases

solved by either LSyntactic
table or LSyntactic

tree covers all the 17 cases solved by at least one algorithm.
In particular, LSyntactic

tree solves all cases that can be solved by either L$ or LRecurrent (regardless
of table-based or tree-based ones). LSyntactic

tree can solve 2 cases that LSyntactic
table cannot manage,

and vice versa. We note that LPeriodic and L$ both solve less than 10 cases due to their fast
growth of states in constructed BAs. It follows that LPeriodic and L$ generally perform worse
than LRecurrent and LSyntactic in terms of the number of solved cases, which is consistent with the
results summarized in Table 1. Contrary to the results for 295 LTL specifications in Table 1,
from Fig. 18 we can see that table-based algorithms usually solve at least as many cases as
their tree-based counterparts. However, we want to point out that the cases solved by tree-based
algorithms may not be solved by their table-based counterparts, which indicates that tree-based
algorithms are good complement to table-based ones. More significantly, LSyntactic

tree has the best
performance among all algorithms regarding the number of solved cases and the total running
time for learning tasks on all benchmarks considered in this work.

11. Discussion and Future works

Regarding our experiments, the BAs used as target automata are in general small; the average
size of the input BAs are around 10 states. From our experience of applying DFA learning

44

algorithms, the performance of tree-based algorithms is significantly better than the table-based
ones when the number of states of the learned DFA is large, say more than 1000. We believe this
will also apply to the case of BA learning. Nevertheless, in our current experiments, most of the
time are spent in answering equivalence queries. One possible direction to improve the scale of
the experiment is to use a PAC (probably approximately correct) BA teacher [58] instead of an
exact one, so the equivalence queries can be answered faster because the BA equivalence queries
will be replaced with a bunch of BA membership testing.

There are several avenues for future works. We believe that our learning algorithms are an in-
teresting contribution for the community because they bring the possibility of many applications.
For the next step, we will investigate the possibility of applying BA learning to the problem of
reactive system synthesis, which is known to be a very difficult problem. Recently, Angluin et al.
proposed in [59] a polynomial-time learning algorithm for a class T of ω-tree languages derived
from weak regular ω-word languages based on the learning algorithm for weak regular ω-word
languages by Maler and Pnueli [35]. It is worth exploring whether we can find a way to learn a
class of ω-tree languages larger than T based on our learning algorithm for the complete class of
regular ω-word languages.

There are learning algorithms for residual NFA [2], which is a more compact canonical rep-
resentation of regular languages than DFA. We think maybe one can also generalize the learning
algorithm for family of DFAs to family of residual NFAs (FRNFA). To do this, one needs to show
FRNFAs also recognize ω-regular language and finds the corresponding right congruences. In-
terestingly, a learning algorithm for finite automata over infinite alphabets is proposed in [60].
A natural direction of future work is to extend our learning algorithm for BAs over finite alpha-
bets to one that supports infinite alphabets. Then one needs to develop a learning algorithm for
FDFAs over infinite alphabets and an equivalent translation from FDFAs to BAs.

The automata learning paradigms in literature can be generally classified into active and
passive. The learning algorithms considered in this work are active since they actively interact
with a teacher to learn about the target language. In contrast, passive learning algorithms learn
an automaton representation for the target language only from a given set of data. It is shown
in [61] that a strict class of deterministic BAs can be passively learned using polynomial time and
data, while this is not the case for nondeterministic BAs. One possible direction for improving
the performance of learning a nondeterministic BA from data is that one first develops a passive
learning algorithm for FDFAs and then converts FDFAs to BAs.

Acknowledgments. We thank two anonymous reviewers for their valuable suggestions to im-
prove the presentation of this paper. This work was partially supported by the National Natural
Science Foundation of China (Grant Nos. 61761136011,61836005,61532019), the Guangdong
Science and Technology Department (Grant No. 2018B010107004), and the MOST project No.
103-2221-E-001-019-MY3.

[1] D. Angluin, D. Fisman, Learning regular omega languages, Theor. Comput. Sci. 650 (2016) 57–72. doi:10.
1016/j.tcs.2016.07.031.

[2] B. Bollig, P. Habermehl, C. Kern, M. Leucker, Angluin-style Learning of NFA, in: IJCAI, 2009, pp. 1004–1009.
[3] M. J. Kearns, U. V. Vazirani, An Introduction to Computational Learning Theory, MIT Press, Cambridge, MA,

USA, 1994.
[4] D. Angluin, Learning regular sets from queries and counterexamples, Inf. Comput. 75 (2) (1987) 87–106. doi:
10.1016/0890-5401(87)90052-6.

[5] R. L. Rivest, R. E. Schapire, Inference of finite automata using homing sequences (extended abstract), in: D. S.
Johnson (Ed.), Proceedings of the 21st Annual ACM Symposium on Theory of Computing, ACM, 1989, pp. 411–
420. doi:10.1145/73007.73047.

[6] J. M. Cobleigh, D. Giannakopoulou, C. S. Pasareanu, Learning assumptions for compositional verification, in:
H. Garavel, J. Hatcliff (Eds.), TACAS, Vol. 2619 of Lecture Notes in Computer Science, Springer, 2003, pp. 331–
346. doi:10.1007/3-540-36577-X_24.

45

http://dx.doi.org/10.1016/j.tcs.2016.07.031
http://dx.doi.org/10.1016/j.tcs.2016.07.031
http://dx.doi.org/10.1016/0890-5401(87)90052-6
http://dx.doi.org/10.1016/0890-5401(87)90052-6
http://dx.doi.org/10.1145/73007.73047
http://dx.doi.org/10.1007/3-540-36577-X_24

[7] S. Chaki, E. M. Clarke, N. Sinha, P. Thati, Automated assume-guarantee reasoning for simulation conformance,
in: K. Etessami, S. K. Rajamani (Eds.), CAV, Vol. 3576 of Lecture Notes in Computer Science, Springer, 2005, pp.
534–547. doi:10.1007/11513988_51.

[8] Y. Chen, A. Farzan, E. M. Clarke, Y. Tsay, B. Wang, Learning minimal separating dfa’s for compositional verifica-
tion, in: S. Kowalewski, A. Philippou (Eds.), TACAS, Vol. 5505 of Lecture Notes in Computer Science, Springer,
2009, pp. 31–45. doi:10.1007/978-3-642-00768-2_3.

[9] O. Grumberg, Y. Meller, Learning-based compositional model checking of behavioral UML systems 45 (2016)
117–136. doi:10.3233/978-1-61499-627-9-117.

[10] S.-W. Lin, E. Andre, Y. Liu, J. Sun, J. Dong, Learning assumptions for compositionalverification of timed systems,
IEEE Transactions on Software Engineering 40 (2014) 137–153. doi:10.1109/TSE.2013.57.

[11] R. Alur, P. Madhusudan, W. Nam, Symbolic compositional verification by learning assumptions, in: K. Etessami,
S. K. Rajamani (Eds.), CAV, Vol. 3576 of Lecture Notes in Computer Science, Springer, 2005, pp. 548–562.
doi:10.1007/11513988_52.

[12] L. Feng, M. Z. Kwiatkowska, D. Parker, Automated learning of probabilistic assumptions for compositional rea-
soning, in: D. Giannakopoulou, F. Orejas (Eds.), FASE, Vol. 6603 of Lecture Notes in Computer Science, Springer,
2011, pp. 2–17. doi:10.1007/978-3-642-19811-3_2.

[13] F. He, X. Gao, B. Wang, L. Zhang, Leveraging weighted automata in compositional reasoning about concurrent
probabilistic systems, in: S. K. Rajamani, D. Walker (Eds.), POPL, ACM, 2015, pp. 503–514. doi:10.1145/
2676726.2676998.

[14] D. A. Peled, M. Y. Vardi, M. Yannakakis, Black box checking, J. Autom. Lang. Comb. 7 (2) (2002) 225–246.
doi:10.25596/jalc-2002-225.

[15] A. Hagerer, H. Hungar, O. Niese, B. Steffen, Model generation by moderated regular extrapolation, in: R. Kutsche,
H. Weber (Eds.), FASE, Vol. 2306 of Lecture Notes in Computer Science, Springer, 2002, pp. 80–95. doi:
10.1007/3-540-45923-5_6.

[16] F. Wang, J. Wu, C. Huang, K. Chang, Evolving a test oracle in black-box testing, in: D. Giannakopoulou, F. Orejas
(Eds.), FASE, Vol. 6603 of Lecture Notes in Computer Science, Springer, 2011, pp. 310–325. doi:10.1007/
978-3-642-19811-3_22.

[17] R. Alur, P. Cerný, P. Madhusudan, W. Nam, Synthesis of interface specifications for java classes, in: J. Palsberg,
M. Abadi (Eds.), POPL, ACM, 2005, pp. 98–109. doi:10.1145/1040305.1040314.

[18] F. Howar, D. Giannakopoulou, Z. Rakamaric, Hybrid learning: interface generation through static, dynamic, and
symbolic analysis, in: M. Pezzè, M. Harman (Eds.), ISSTA, ACM, 2013, pp. 268–279. doi:10.1145/2483760.
2483783.

[19] D. Giannakopoulou, Z. Rakamaric, V. Raman, Symbolic learning of component interfaces, in: A. Miné, D. Schmidt
(Eds.), SAS, Vol. 7460 of Lecture Notes in Computer Science, Springer, 2012, pp. 248–264. doi:10.1007/
978-3-642-33125-1_18.

[20] J. Sun, H. Xiao, Y. Liu, S. Lin, S. Qin, TLV: abstraction through testing, learning, and validation, in: E. D. Nitto,
M. Harman, P. Heymans (Eds.), ESEC/FSE, ACM, 2015, pp. 698–709. doi:10.1145/2786805.2786817.

[21] D. Giannakopoulou, Z. Rakamaric, V. Raman, Symbolic learning of component interfaces 7460 (2012) 248–264.
doi:10.1007/978-3-642-33125-1_18.

[22] M. Chapman, H. Chockler, P. Kesseli, D. Kroening, O. Strichman, M. Tautschnig, Learning the language of error,
in: B. Finkbeiner, G. Pu, L. Zhang (Eds.), ATVA, Vol. 9364 of Lecture Notes in Computer Science, Springer, 2015,
pp. 114–130. doi:10.1007/978-3-319-24953-7_9.

[23] Y. Chen, C. Hsieh, O. Lengál, T. Lii, M. Tsai, B. Wang, F. Wang, PAC learning-based verification and model
synthesis, in: L. K. Dillon, W. Visser, L. A. Williams (Eds.), ICSE, ACM, 2016, pp. 714–724. doi:10.1145/
2884781.2884860.

[24] H. Xiao, J. Sun, Y. Liu, S. Lin, C. Sun, Tzuyu: Learning stateful typestates, in: E. Denney, T. Bultan, A. Zeller
(Eds.), ASE, IEEE, 2013, pp. 432–442. doi:10.1109/ASE.2013.6693101.

[25] F. W. Vaandrager, Model learning, Commun. ACM 60 (2) (2017) 86–95. doi:10.1145/2967606.
[26] B. Bollig, J. Katoen, C. Kern, M. Leucker, D. Neider, D. R. Piegdon, libalf: The automata learning framework, in:

T. Touili, B. Cook, P. B. Jackson (Eds.), CAV, Vol. 6174 of Lecture Notes in Computer Science, Springer, 2010,
pp. 360–364. doi:10.1007/978-3-642-14295-6_32.

[27] The open-source learnlib - A framework for active automata learning, in: D. Kroening, C. S. Pasareanu (Ed-
s.), CAV, Vol. 9206 of Lecture Notes in Computer Science, Springer, 2015, pp. 487–495. doi:10.1007/
978-3-319-21690-4_32.

[28] F. Howar, B. Steffen, B. Jonsson, S. Cassel, Inferring canonical register automata, in: V. Kuncak, A. Rybalchenko
(Eds.), VMCAI, Vol. 7148 of Lecture Notes in Computer Science, Springer, 2012, pp. 251–266. doi:10.1007/
978-3-642-27940-9_17.

[29] M. Isberner, F. Howar, B. Steffen, Learning register automata: from languages to program structures, Mach. Learn.
96 (1-2) (2014) 65–98. doi:10.1007/s10994-013-5419-7.

46

http://dx.doi.org/10.1007/11513988_51
http://dx.doi.org/10.1007/978-3-642-00768-2_3
http://dx.doi.org/10.3233/978-1-61499-627-9-117
http://dx.doi.org/10.1109/TSE.2013.57
http://dx.doi.org/10.1007/11513988_52
http://dx.doi.org/10.1007/978-3-642-19811-3_2
http://dx.doi.org/10.1145/2676726.2676998
http://dx.doi.org/10.1145/2676726.2676998
http://dx.doi.org/10.25596/jalc-2002-225
http://dx.doi.org/10.1007/3-540-45923-5_6
http://dx.doi.org/10.1007/3-540-45923-5_6
http://dx.doi.org/10.1007/978-3-642-19811-3_22
http://dx.doi.org/10.1007/978-3-642-19811-3_22
http://dx.doi.org/10.1145/1040305.1040314
http://dx.doi.org/10.1145/2483760.2483783
http://dx.doi.org/10.1145/2483760.2483783
http://dx.doi.org/10.1007/978-3-642-33125-1_18
http://dx.doi.org/10.1007/978-3-642-33125-1_18
http://dx.doi.org/10.1145/2786805.2786817
http://dx.doi.org/10.1007/978-3-642-33125-1_18
http://dx.doi.org/10.1007/978-3-319-24953-7_9
http://dx.doi.org/10.1145/2884781.2884860
http://dx.doi.org/10.1145/2884781.2884860
http://dx.doi.org/10.1109/ASE.2013.6693101
http://dx.doi.org/10.1145/2967606
http://dx.doi.org/10.1007/978-3-642-14295-6_32
http://dx.doi.org/10.1007/978-3-319-21690-4_32
http://dx.doi.org/10.1007/978-3-319-21690-4_32
http://dx.doi.org/10.1007/978-3-642-27940-9_17
http://dx.doi.org/10.1007/978-3-642-27940-9_17
http://dx.doi.org/10.1007/s10994-013-5419-7

[30] J. An, M. Chen, B. Zhan, N. Zhan, M. Zhang, Learning one-clock timed automata 12078 (2020) 444–462. doi:
10.1007/978-3-030-45190-5_25.

[31] B. Alpern, F. B. Schneider, Recognizing safety and liveness, Distributed Comput. 2 (3) (1987) 117–126. doi:
10.1007/BF01782772.

[32] M. Y. Vardi, P. Wolper, An automata-theoretic approach to automatic program verification, in: LICS, 1986, pp.
322–331.

[33] A. Pnueli, R. Rosner, On the synthesis of a reactive module, in: Conference Record of POPL 1989, ACM Press,
1989, pp. 179–190. doi:10.1145/75277.75293.

[34] C. S. Lee, N. D. Jones, A. M. Ben-Amram, The size-change principle for program termination, in: C. Hankin,
D. Schmidt (Eds.), Conference Record of POPL 2001, ACM, 2001, pp. 81–92. doi:10.1145/360204.360210.

[35] O. Maler, A. Pnueli, On the learnability of infinitary regular sets, Inf. Comput. 118 (2) (1995) 316–326. doi:
10.1006/inco.1995.1070.

[36] A. Farzan, Y. Chen, E. M. Clarke, Y. Tsay, B. Wang, Extending automated compositional verification to the full
class of omega-regular languages, in: C. R. Ramakrishnan, J. Rehof (Eds.), TACAS, Vol. 4963 of Lecture Notes in
Computer Science, Springer, 2008, pp. 2–17. doi:10.1007/978-3-540-78800-3_2.

[37] H. Calbrix, M. Nivat, A. Podelski, Ultimately periodic words of rational w-languages, in: S. D. Brookes, M. G.
Main, A. Melton, M. W. Mislove, D. A. Schmidt (Eds.), Mathematical Foundations of Programming Semantics,
Vol. 802 of Lecture Notes in Computer Science, Springer, 1993, pp. 554–566. doi:10.1007/3-540-58027-1\
_27.

[38] O. Maler, L. Staiger, On syntactic congruences for omega-languages, in: P. Enjalbert, A. Finkel, K. W. Wagner
(Eds.), STACS, Vol. 665 of Lecture Notes in Computer Science, Springer, 1993, pp. 586–594. doi:10.1007/
3-540-56503-5_58.

[39] M. Heizmann, J. Hoenicke, A. Podelski, Termination analysis by learning terminating programs, in: A. Biere,
R. Bloem (Eds.), CAV, Vol. 8559 of Lecture Notes in Computer Science, Springer, 2014, pp. 797–813. doi:
10.1007/978-3-319-08867-9_53.

[40] C. Courcoubetis, M. Yannakakis, The complexity of probabilistic verification, J. ACM 42 (4) (1995) 857–907.
doi:10.1145/210332.210339.

[41] M. Isberner, F. Howar, B. Steffen, The TTT algorithm: A redundancy-free approach to active automata learning,
in: B. Bonakdarpour, S. A. Smolka (Eds.), RV, Vol. 8734 of Lecture Notes in Computer Science, Springer, 2014,
pp. 307–322. doi:10.1007/978-3-319-11164-3_26.

[42] Y. Li, X. Sun, A. Turrini, Y. Chen, J. Xu, ROLL 1.0: ω -regular language learning library, in: T. Vojnar, L. Zhang
(Eds.), TACAS, Vol. 11427 of Lecture Notes in Computer Science, Springer, 2019, pp. 365–371. doi:10.1007/
978-3-030-17462-0_23.

[43] Y. Tsay, M. Tsai, J. Chang, Y. Chang, Büchi store: An open repository of büchi automata, in: P. A. Abdulla,
K. R. M. Leino (Eds.), TACAS, Vol. 6605 of Lecture Notes in Computer Science, Springer, 2011, pp. 262–266.
doi:10.1007/978-3-642-19835-9_23.

[44] Y. Li, Y. Chen, L. Zhang, D. Liu, A novel learning algorithm for büchi automata based on family of dfas and
classification trees, in: A. Legay, T. Margaria (Eds.), TACAS, Vol. 10205 of Lecture Notes in Computer Science,
2017, pp. 208–226. doi:10.1007/978-3-662-54577-5_12.

[45] M. Y. Vardi, Automatic verification of probabilistic concurrent finite-state programs, in: 26th Annual Symposium
on Foundations of Computer Science, IEEE Computer Society, 1985, pp. 327–338. doi:10.1109/SFCS.1985.
12.

[46] S. Sickert, J. Esparza, S. Jaax, J. Kretı́nský, Limit-deterministic büchi automata for linear temporal logic, in:
S. Chaudhuri, A. Farzan (Eds.), CAV, Vol. 9780 of Lecture Notes in Computer Science, Springer, 2016, pp. 312–
332. doi:10.1007/978-3-319-41540-6_17.

[47] F. Blahoudek, M. Heizmann, S. Schewe, J. Strejcek, M. Tsai, Complementing semi-deterministic büchi automata,
in: M. Chechik, J. Raskin (Eds.), TACAS, Vol. 9636 of Lecture Notes in Computer Science, Springer, 2016, pp.
770–787. doi:10.1007/978-3-662-49674-9_49.

[48] J. E. Hopcroft, R. Motwani, J. D. Ullman, Introduction to Automata Theory, Languages, and Computation,
Addison-Wesley Longman Publishing Co., Inc., 2006.

[49] J. R. Büchi, On a decision method in restricted second order arithmetic, in: Int. Congress on Logic, Methodology
and Philosophy of Science, 1962, pp. 1–11.

[50] C. Baier, J. Katoen, Principles of model checking, MIT Press, 2008.
[51] D. Angluin, D. Fisman, Regular omega-languages with an informative right congruence, in: A. Orlandini, M. Zim-

mermann (Eds.), GandALF 2018, Vol. 277 of EPTCS, 2018, pp. 265–279. doi:10.4204/EPTCS.277.19.
[52] A. Arnold, A syntactic congruence for rational omega-language, Theor. Comput. Sci. 39 (1985) 333–335. doi:

10.1016/0304-3975(85)90148-3.
[53] O. Maler, L. Staiger, On syntactic congruences for omega-languages, in: P. Enjalbert, A. Finkel, K. W. Wagner

(Eds.), STACS, Vol. 665 of Lecture Notes in Computer Science, Springer, 1993, pp. 586–594. doi:10.1007/

47

http://dx.doi.org/10.1007/978-3-030-45190-5_25
http://dx.doi.org/10.1007/978-3-030-45190-5_25
http://dx.doi.org/10.1007/BF01782772
http://dx.doi.org/10.1007/BF01782772
http://dx.doi.org/10.1145/75277.75293
http://dx.doi.org/10.1145/360204.360210
http://dx.doi.org/10.1006/inco.1995.1070
http://dx.doi.org/10.1006/inco.1995.1070
http://dx.doi.org/10.1007/978-3-540-78800-3_2
http://dx.doi.org/10.1007/3-540-58027-1_27
http://dx.doi.org/10.1007/3-540-58027-1_27
http://dx.doi.org/10.1007/3-540-56503-5_58
http://dx.doi.org/10.1007/3-540-56503-5_58
http://dx.doi.org/10.1007/978-3-319-08867-9_53
http://dx.doi.org/10.1007/978-3-319-08867-9_53
http://dx.doi.org/10.1145/210332.210339
http://dx.doi.org/10.1007/978-3-319-11164-3_26
http://dx.doi.org/10.1007/978-3-030-17462-0_23
http://dx.doi.org/10.1007/978-3-030-17462-0_23
http://dx.doi.org/10.1007/978-3-642-19835-9_23
http://dx.doi.org/10.1007/978-3-662-54577-5_12
http://dx.doi.org/10.1109/SFCS.1985.12
http://dx.doi.org/10.1109/SFCS.1985.12
http://dx.doi.org/10.1007/978-3-319-41540-6_17
http://dx.doi.org/10.1007/978-3-662-49674-9_49
http://dx.doi.org/10.4204/EPTCS.277.19
http://dx.doi.org/10.1016/0304-3975(85)90148-3
http://dx.doi.org/10.1016/0304-3975(85)90148-3
http://dx.doi.org/10.1007/3-540-56503-5_58
http://dx.doi.org/10.1007/3-540-56503-5_58

3-540-56503-5_58.
[54] D. Angluin, U. Boker, D. Fisman, Families of dfas as acceptors of omega-regular languages, in: P. Faliszewski,

A. Muscholl, R. Niedermeier (Eds.), MFCS, Vol. 58 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2016, pp. 11:1–11:14. doi:10.4230/LIPIcs.MFCS.2016.11.

[55] P. A. Abdulla, Y. Chen, L. Clemente, L. Holı́k, C. Hong, R. Mayr, T. Vojnar, Simulation subsumption in ramsey-
based büchi automata universality and inclusion testing, in: T. Touili, B. Cook, P. B. Jackson (Eds.), CAV, Vol. 6174
of Lecture Notes in Computer Science, Springer, 2010, pp. 132–147. doi:10.1007/978-3-642-14295-6_14.

[56] P. A. Abdulla, Y. Chen, L. Clemente, L. Holı́k, C. Hong, R. Mayr, T. Vojnar, Advanced ramsey-based büchi
automata inclusion testing, in: J. Katoen, B. König (Eds.), CONCUR, Vol. 6901 of Lecture Notes in Computer
Science, Springer, 2011, pp. 187–202. doi:10.1007/978-3-642-23217-6_13.

[57] W. Thomas, Automata on infinite objects, in: J. van Leeuwen (Ed.), Handbook of Theoretical Computer Sci-
ence, Volume B: Formal Models and Semantics, Elsevier and MIT Press, 1990, pp. 133–191. doi:10.1016/
b978-0-444-88074-1.50009-3.

[58] D. Angluin, Queries and concept learning, Mach. Learn. 2 (4) (1987) 319–342. doi:10.1007/BF00116828.
[59] D. Angluin, T. Antonopoulos, D. Fisman, Query learning of derived ω-tree languages in polynomial time, Log.

Methods Comput. Sci. 15 (3). doi:10.23638/LMCS-15(3:21)2019.
[60] J. Moerman, M. Sammartino, A. Silva, B. Klin, M. Szynwelski, Learning nominal automata, in: G. Castagna, A. D.

Gordon (Eds.), POPL, ACM, 2017, pp. 613–625. doi:10.1145/3009837.3009879.
[61] D. Angluin, D. Fisman, Y. Shoval, Polynomial identification of ω-automata, in: A. Biere, D. Parker (Eds.),

TACAS, Vol. 12079 of Lecture Notes in Computer Science, Springer, 2020, pp. 325–343. doi:10.1007/
978-3-030-45237-7_20.

48

http://dx.doi.org/10.1007/3-540-56503-5_58
http://dx.doi.org/10.1007/3-540-56503-5_58
http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.11
http://dx.doi.org/10.1007/978-3-642-14295-6_14
http://dx.doi.org/10.1007/978-3-642-23217-6_13
http://dx.doi.org/10.1016/b978-0-444-88074-1.50009-3
http://dx.doi.org/10.1016/b978-0-444-88074-1.50009-3
http://dx.doi.org/10.1007/BF00116828
http://dx.doi.org/10.23638/LMCS-15(3:21)2019
http://dx.doi.org/10.1145/3009837.3009879
http://dx.doi.org/10.1007/978-3-030-45237-7_20
http://dx.doi.org/10.1007/978-3-030-45237-7_20

	Introduction
	Preliminaries
	Representations of -Regular Languages
	Büchi Automata Learning Framework based on FDFAs
	Table-based Learning Algorithm for FDFAs
	Tree-based Learning Algorithm for FDFAs
	Classification Tree Structure in Learning
	Tree-based Learning Algorithm

	From FDFAs to Büchi Automata
	From FDFAs to Limit Deterministic Büchi Automata

	Counterexample Analysis for the FDFA Teacher
	Counterexample Analysis
	From an -word uv to the DFA Du$v
	The Construction of the DFA Du$v

	From the FDFA F to the DFAs D1 and D2

	Correctness and Complexity Analysis
	Correctness of the Tree-based FDFA Learning Algorithm
	Complexity of the Tree-based Learning Algorithm

	Experimental results
	Discussion and Future works

