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Abstract

In this paper, we propose a novel algorithm to learn a Büchi automaton from a teacher

who knows an ω-regular language. The learned Büchi automaton can be a nondeter-

ministic one or a limit deterministic Büchi automaton which can be used in the veri-

fication of probabilistic systems and the program termination analysis. The algorithm

is based on learning a formalism named family of DFAs (FDFAs) recently proposed by

Angluin and Fisman [1]. The main catch is that we use a classification tree structure

instead of the standard observation table structure. The worst case storage space re-

quired by our algorithm is quadratically better than the table-based algorithm proposed

in [1]. We implement the first publicly available library ROLL (Regular Omega Lan-

guage Learning ), which consists of all full ω-regular learning algorithms available in

the literature and the new algorithms proposed in this paper. Experimental results show

that our tree-based algorithms have the best performance among others regarding the

number of solved learning tasks.
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1. Introduction

Since the last decade, learning-based automata inference techniques [2, 3, 4, 5]

have received significant attention from the community of formal system analysis. In

general, the primary applications of automata learning in the community can be cate-

gorized into two: improving efficiency and scalability of verification [6, 7, 8, 9, 10, 11,

12, 13] and synthesizing abstract system model for further analysis [14, 15, 16, 17, 18,

19, 20, 21, 22, 23].

The former usually is based on the so called assume-guarantee compositional ver-

ification approach, which divides a verification task into several subtasks via a compo-

sition rule. Learning algorithms are applied to construct environmental assumptions of

components in the rule automatically. For the latter, automata learning has been used

to automatically generate interface model of computer programs [17, 18, 19, 24, 20], a

model of system error traces for diagnosis purpose [22], behavior model of programs

for statistical program analysis [23], and model-based testing and verification [14, 15,

16]. Specially, a recent position paper by Vaandrager [25] explains the concept of

model learning, which infers an automata representation of a hardware or software

system using active automata learning algorithms. The inferred automata models are

used to help people better understand and diagnose a system.

Besides the classical finite automata learning algorithms, people also develop and

apply learning algorithms for richer models for the above two applications. For exam-

ple, learning algorithms for register automata [26, 27] have been developed and applied

to synthesis systems and program interface models. A learning algorithm for timed

automata has been developed for automated compositional verification for timed sys-

tems [10]. However, all the results mentioned above are for checking safety properties

or synthesizing finite behavior models of systems/programs. Büchi automata are a stan-

dard model for describing liveness properties of distributed systems [28]. The model

has been applied in automata theoretical model checking [29] to describe the property

to be verified. They are also often used in the synthesis of reactive systems. More-

over, Büchi automata have been used as a means to prove program termination [30].

However, unlike the case for finite automata learning, learning algorithms for Büchi

2



automata are very rarely used in our community. We believe this is a promising area

for further investigation.

The first learning algorithm for the full-class of ω-regular languages represented

as Büchi automata was described in [31], based on the L∗ algorithm [4] and the result

of [32]. Recently, Angluin and Fisman propose a new learning algorithm for ω-regular

languages [1] using a formalism called a family of DFAs (FDFAs), based on the results

of [33]. The main problem of applying their algorithm in verification and synthesis is

that their algorithm requires a teacher for FDFAs. To the best of our knowledge, the

FDFAs have not yet been applied in the verification while the Büchi automata have

already been used in several areas such as program termination [34] and probabilistic

verification [35]. Nonetheless, in this paper, we show that their FDFA learning algo-

rithm can be adapted to support Büchi automata teachers.

We propose a novel ω-regular learning algorithm based on FDFAs and a classifi-

cation tree structure (inspired by the tree-based L∗ algorithm in [3]). The worst case

storage space required by our algorithm is quadratically better than the table-based al-

gorithm proposed in [1]. Experimental results show that our tree-based algorithms have

the best performance among others regarding the number of solved learning tasks.

For regular language learning, there are robust and publicly available libraries, e.g.,

libalf[36] and LearnLib[37]. A similar library is still lacking for Büchi automata learn-

ing. We implement the first publicly available Büchi automata learning library, named

ROLL (Regular Omega Language Learning, http://iscasmc.ios.ac.cn/roll),

which includes all Büchi automata learning algorithms of the full class of ω-regular

languages available in the literature and the ones proposed in this paper. We com-

pare the performance of those algorithms using a benchmark consisting of 295 Büchi

automata corresponding to all 295 LTL specifications available in BüchiStore [38].

To summarize, our contribution includes the following. (1) Adapting the algorithm

of [1] to support Büchi automata teachers. (2) A novel learning algorithm for ω-regular

language based on FDFAs and classification trees. (3) The publicly available library

ROLL that includes all Büchi automata learning algorithms can be found in the litera-

ture. (4) A comprehensive empirical evaluation of Büchi automata learning algorithms.

A previous version of our learning algorithm appeared in [39]. Compared to the
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previous version, we have added more examples and intuitions about the proposed

learning algorithms in this version. For instance, we have added Fig. 2 in order to

give the readers an idea of three different canonical FDFAs. We have provided detailed

proofs and complexity analysis. Many proofs given here are not trivial so we added

them in the hope that the readers may benefit from those ideas in their own works.

The major breakthrough made in this paper is that we extended the learning al-

gorithm for Büchi automata proposed in [39] to a learning algorithm for limit deter-

ministic Büchi automaton. Limit deterministic Büchi automaton is a kind of Büchi

automaton introduced in [35] for qualitative verification of Markov Decision Processes

(MDPs). More precisely, our learned limit deterministic Büchi automaton is very spe-

cial and has two components, namely the initial component and the accepting compo-

nent where two components are deterministic and all accepting states are contained in

the accepting component. The nondeterminism only occurs on the transitions from the

initial component to the accepting component. We are aware of that the same kind of

Büchi automata is also defined in [40]. Moreover, limit deterministic Büchi automaton

is also used in the program termination analysis according to [34, 41]. Therefore, we

also provide the possibility to apply our learning algorithm in probabilistic verification

and program analysis.

2. Preliminaries

Let ⊕ be the standard modular arithmetic operator. Let A and B be two sets. We

use A 	 B to denote their symmetric difference, i.e., the set (A \ B) ∪ (B \ A). Let Σ be

a finite set called alphabet. We use ε to represent an empty word. The set of all finite

words is denoted by Σ∗, and the set of all infinite words, called ω-words, is denoted by

Σω. Moreover, we also denote by Σ+ the set Σ∗ \ {ε}. We use |u| to denote the length

of the finite word u. We use [i · · · j] to denote the set {i, i + 1, · · · , j}. We denote by

w[i] the i-th letter of a word w. We use w[i..k] to denote the subword of w starting at

the i-th letter and ending at the k-th letter, inclusive, when i ≤ k and the empty word ε

when i > k. Given a finite word u = u[1] · · · u[k] and a word w, we denote by u · w the

concatenation of u and w, i.e., the finite or infinite word u · w = u[1] . . . u[k]w[1] . . . ,

4



respectively. We may just write uw instead of u · w.

A finite automaton (FA) is a tuple A = (Σ,Q, q0, F, δ) consisting of a finite alphabet

Σ, a finite set Q of states, an initial state q0, a set F ⊆ Q of accepting states, and a

transition relation δ ⊆ Q × Σ × Q. For convenience, we also use δ(q, a) to denote the

set {q′ | (q, a, q′) ∈ δ}. A run of an FA on a finite word v = a1a2a3 · · · an is a sequence

of states q0, q1, · · · , qn such that (qi, ai+1, qi+1) ∈ δ for every 0 ≤ i ≤ n − 1 where n ≥ 1.

The run on v is accepting if qn ∈ F. A word u is accepting in the FA if it has an

accepting run. We also say the word u is accepted by the FA when it is accepting in

the FA. A language is a subset of Σ∗ and the language of A, denoted by L(A), is the set

{u ∈ Σ∗ | u is accepting in A}. Given two FAs A and B, one can construct a product FA

A × B recognizing L(A) ∩ L(B) using a standard product construction.

A deterministic finite automaton (DFA) is an FA such that δ(q, a) is a singleton for

any q ∈ Q and a ∈ Σ. For DFA, we write δ(q, a) = q′ instead of δ(q, a) = {q′}. The

transition can be lifted to words by defining δ(q, ε) = q and δ(q, av) = δ(δ(q, a), v) for

q ∈ Q, a ∈ Σ and v ∈ Σ∗. We also use A(v) as a shorthand for δ(q0, v).

We call the language of a DFA or an FA a regular language and an ω-language is

a subset of Σω. Words of the form uvω are called ultimately periodic words. We use

a pair of finite words (u, v) to denote the ultimately periodic word w = uvω. We also

call (u, v) a decomposition of w. For an ω-language L, let UP(L) = {uvω | u ∈ Σ∗, v ∈

Σ+, uvω ∈ L}, i.e., all ultimately periodic words in L. In the paper, we are particularly

interested in a special ω-language called ω-regular language. In the following, we will

introduce the representations used in this paper to recognize ω-regular languages and

discuss their roles in the ω-regular language learning.

3. Representations of ω-Regular Languages

The first representation of ω-regular languages introduced here is the Büchi au-

tomaton, which is invented by Julius Richard Büchi and it is later widely used in model

checking field. A Büchi automaton (BA) has the same structure as an FA, except that it

accepts only infinite words. A run of a BA on an infinite word is an infinite sequence of

states defined similarly to the case of an FA on a finite word. An infinite word w is ac-
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cepted by a BA iff it has a run visiting at least one accepting state infinitely often. The

language defined by a BA A, denoted by L(A), is the set {w ∈ Σω | w is accepted by A}.

An ω-language L ⊆ Σω is ω-regular iff there exists a BA A such that L = L(A). In

this paper, we also consider some other kinds of BAs. A BA is a deterministic Büchi

automaton (DBA) if |δ(q, a)| = 1 for each q ∈ Q and a ∈ Σ. A BA is a limit determin-

istic Büchi automaton (LDBA) if its states set Q can be partitioned into two disjoint

sets QN ∪ QD, such that 1) δ(q, a) ⊆ QD and |δ(q, a)| = 1 if q ∈ QD and a ∈ Σ and 2)

F ⊆ QD. Note that limit deterministic Büchi automata can also recognize ω-regular

languages [35, 40] and have the same expressive power as the BAs while DBAs are

strictly less expressive than BAs. For every ω-regular language L, the set of ultimately

periodic words of L, i.e., UP(L), is unique.

Theorem 1 (Ultimately Periodic Words of ω-Regular Languages [42]). Let L, L′ be

two ω-regular languages. Then L = L′ if and only if UP(L) = UP(L′).

An immediate consequence of Theorem 1 is that, for any two ω-regular languages L1

and L2, if L1 , L2 then there must exist some ultimately periodic word xyω ∈ UP(L1)	

UP(L2). Therefore, Calbrix et al. proposed a special DFA as another representation of

the ω-regular languages in [32]. More precisely, they construct a DFA D$ from a BA

A to represent L = L(A) such that L(D$) = {u$v | u ∈ Σ∗, v ∈ Σ+, uvω ∈ UP(L)} where

$ < Σ is a fresh letter. Intuitively, the DFA D$ accepts every ultimately periodic word

uvω of UP(L) in the form of a finite word u$v.

Our goal in this paper is to learn the ω-regular languages via Büchi automata and

our idea of learning goes back to the learning algorithm L∗ by Angluin in [4]. In [4],

Angluin proposed to learn the regular languages via DFAs and the right congruence

is the theoretical foundation for it to discover states in a regular language. A right

congruence is an equivalence relation v on Σ∗ such that x v y implies xv v yv for

every x, y, v ∈ Σ∗. We denote by |v| the index of v, i.e., the number of equivalence

classes of v. We use Σ∗/v to denote the equivalence classes of the right congruence v.

A finite right congruence is a right congruence with a finite index. For a word u ∈ Σ∗,

we denote by [u]v the class of v in which u resides.

The main obstacle to learn ω-regular languages via Büchi automata is that there
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is a lack of right congruence for Büchi automata. The first learning algorithm for the

full-class of ω-regular languages represented as Büchi automata proposed in [31] cir-

cumvents this problem by using L∗ algorithm to learn the DFA D$ in [32] and transform

the learned D$ to a BA. Another way to bypass the obstacle is to propose right con-

gruences for the ω-regular languages. Inspired by the work of Arnold [43], Maler and

Stager [44] proposed the notion of family of right-congruences. Based on this, Angluin

and Fisman [1] further proposed to learn ω-regular languages via a formalism called

family of DFAs, in which every DFA corresponds to a right congruence with a finite

index. Our idea to learn a BA is by learning a family of DFAs.

Definition 1 (Family of DFAs (FDFA) [1]). A family of DFAs F = (M, {Aq}) over

an alphabet Σ consists of a leading automaton M = (Σ,Q, q0, δ) and progress DFAs

Aq = (Σ,Qq, sq, δq, Fq) for each q ∈ Q.

Notice that the leading automaton M is a DFA without accepting states. Each FDFA

F characterizes a set of ultimately periodic words UP(F ).

Definition 2 (Acceptance condition of FDFA). An ultimately periodic word w is in

UP(F ) iff it has a decomposition (u, v) accepted by F . A decomposition (u, v) is ac-

cepted by F iff M(uv) = M(u) and v ∈ L(AM(u)).

An example of an FDFA F is depicted in Fig. 1. The leading automaton M has only

one state ε. The progress automaton of ε is Aε . The word (ba)ω is in UP(F ) because

it has a decomposition (ba, ba) such that M(ba · ba) = M(ba) and ba ∈ L(AM(ba)) =

L(Aε). It is easy to see that the decomposition (bab, ab) is not accepted by F since

ab < L(AM(bab)) = L(Aε).

ε

M a

b

ε a

Aε

a, b

a

b

Figure 1: An example of an FDFA

For any ω-regular language L, there

exists an FDFA F such that UP(L) =

UP(F ) [1]. We show in Sect. 7 that

it is not the case for the reverse direc-

tion. More precisely, in [1], three kinds

of FDFAs are suggested as the canonical

representations of ω-regular languages,
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namely periodic FDFA, syntactic FDFA and recurrent FDFA. Their formal definitions

are given in terms of right congruence.

The right congruence vL of a givenω-regular language L is defined such that x vL y

iff ∀w ∈ Σω.xw ∈ L ⇐⇒ yw ∈ L. The index of vL is finite because it is not larger than

the number of states in a deterministic Muller automaton recognizing L [33]. Given

a deterministic automaton M = (Σ,Q, q0, δ) by ignoring its accepting states, we can

define a right congruence vM as follows: x vM y iff δ(q0, x) = δ(q0, y) for any x, y ∈ Σ∗.

In this paper, by an abuse of notation, we use a finite word u to denote the state in a

DFA in which the equivalence class [u] resides. The three canonical FDFAs introduced

in [1] also follow the idea to recognize the ω-regular language L by the set of ultimately

periodic words UP(L) as the DFA D$ in [32]. We now are ready to introduce the right

congruences of the three canonical FDFAs defined in [1].

We first introduce the periodic FDFA, which Angluin and Fisman called in [1] the

“FDFA version” of the language L(D$) defined in [32].

Definition 3 (Periodic FDFA [1]). Given an ω-regular language L, the periodic FDFA

F = (M, {Aq}) of L is defined as follows.

The leading automaton M is the tuple (Σ,Σ∗/vL , [ε]vL , δ), where δ([u]vL , a) = [ua]vL for

all u ∈ Σ∗ and a ∈ Σ.

We define the right congruences ≈u
P for progress automata Au of the periodic FDFA

as follows: x ≈u
P y iff ∀v ∈ Σ∗.u(xv)ω ∈ L⇐⇒ u(yv)ω ∈ L.

The progress DFA Au is the tuple (Σ,Σ∗/≈u
P
, [ε]≈u

P
, δP, FP), where we have that

δP([v]≈u
P
, a) = [va]≈u

P
for all v ∈ Σ∗ and a ∈ Σ. The accepting states FP is the set

of equivalence classes [v]≈u
P

for which uvω ∈ L.

It has been shown that for any u, x, y, v ∈ Σ∗, xv ≈u
P yv if x ≈u

P y and ≈u
P is of

finite index for the given ω-regular language L [1]. Therefore ≈u
P are right congruences

of finite index so one can build a transition system from each of them. Note that the

syntactic right congruences and the recurrent right congruences introduced later are

also of finite index.

To further explain the canonical FDFAs, we introduce another notion for the FD-

FAs. We say a decomposition (u, v) is captured by an FDFA F = (M, {Aq}) if AM(u)(v)
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M

Leading

a b

aa ab
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b

a b
a, b
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b

b

a

ε

a b

Aε

Periodic

a
b

a b
a, b

ε

a b

ab

Aa

a
b

a

b

b

a
a, b

ε

Ab

a, b

ε

a b

Aaa

a
b

a b
a, b

ε

a b

Aab

a
b

a, b ba

ε

Aε

Syntactic

a b

aa ab

a
b

a b
a, b

a
b

b

a

ε

a b

ab

Aa

a
b

a

b

b

a
a, b

ε

Ab

a, b

ε

a b

Aaa

a
b

a b
a, b

ε

a b

Aab

a
b

a, b ba

ε

Aε

Recurrent

a, b

ε

Aa

a, b

ε

Ab

a, b

ε

a b

Aaa

a
b

a b
a, b

ε

a b

Aab

a
b

a, b ba

Figure 2: An example of three canonical FDFAs F = (M, {Aq}) of L = aω + abω

9



is an accepting state in AM(u) and we also say F captures the decomposition (u, v).

Intuitively, the corresponding periodic FDFA of L captures every decomposition (u, v)

of uvω ∈ UP(L) just like the DFA D$. It follows that the language of the progress

DFA Au in the periodic FDFA is the set {v ∈ Σ+ | uvω ∈ L}. Take the periodic FDFA

of L = aω + abω in Fig. 2 as an example where the leading automaton M is given in

the column labeled “Leading” and the progress DFAs are in the column labeled “Peri-

odic”. There are three equivalent classes in the periodic right congruence ≈aa
P , namely

[ε]≈aa
P

, [a]≈aa
P

and [b]≈aa
P

. We can check that a is not in the equivalent classes [ε]≈aa
P

and

[b]≈aa
P

since there exists a finite word ε such that aa(aε)ω ∈ L while aa(εε)ω < L and

aa(bε)ω < L. The word ε is not in the equivalent class [b]≈aa
P

since there exists a such

that aa(ba)ω < L while aa(εa)ω ∈ L. There is a transition from the state a to the state b

via letter b in the progress DFA Aaa since the word ab is in the equivalent class [b]≈aa
P

.

The state a is an accepting state in Aaa since aa(a)ω ∈ L according to Definition 3. One

can easily verify that the periodic FDFA indeed captures all the decompositions of the

ultimately periodic words aω and abω and they are in the form (ε, a+) (by Aε), (a, a+)

(by Aa), (a, b+) (by Aa), (aa+, a+) (by Aaa) and (ab+, b+) (by Aab).

The second canonical FDFA is the syntactic FDFA which Angluin and Fisman con-

struct from the family of right congruences defined by Maler and Staiger in [33]. The

leading automaton in the syntactic FDFA is the same one in the periodic FDFA and

they are different from each other by their definitions for the progress DFAs. Basically,

given a state u in the leading automaton, the progress DFA Au
P in the periodic FDFA

of L accepts the regular language {v ∈ Σ+ | uvω ∈ L} while the progress DFA Au
S in

the syntactic FDFA accepts the regular language {v ∈ Σ+ | u vL uv ∧ uvω ∈ L}. If

we construct the leading automaton M from the right congruence vL, we have that

M(u) = M(uv) for every v ∈ L(Au
S ). That is, the syntactic FDFA only captures the

decomposition (u, v) of the ultimately periodic word uvω ∈ L such that after we reach

the state M(u) in M and keep reading the periodic part v, we will go back to the same

state M(u). This minor change of the ultimately periodic words captured in the syn-

tactic FDFA can make a big difference since it has been shown in [1] that there exists

some ω-regular language L for which the number of states in the syntactic FDFA is

exponentially smaller than the number of states in the periodic FDFA.
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Definition 4 (Syntactic FDFA [1]). Given anω-regular language L, the syntactic FDFA

F = (M, {Aq}) of L is defined as follows.

The leading automaton M is defined the same as in Definition 3.

We define the right congruences ≈u
S for progress automata Au of the syntactic FDFA

as follows:

x ≈u
S y iff ux vL uy and ∀v ∈ Σ∗.uxv vL u =⇒ (u(xv)ω ∈ L⇐⇒ u(yv)ω ∈ L).

The progress DFA Au is defined similarly as in Definition 3 except that we use the

equivalence relation ≈u
S for the DFA construction and the accepting states FS is the set

of equivalence classes [v]≈u
S

for which uv vL u and uvω ∈ L.

An example of the syntactic FDFA for L = aω + abω is given in Fig. 2, which is also

considered in [1]. In [1], the progress automaton for the state a in the syntactic FDFA is

not correct since there is a transition from ab to b via letter a. However, by the definition

of ≈a
S in Definition 4, aba is not in the equivalent class [b]≈a

S
since a ·aba 6vL a ·b. That

is, if aba and b have to be in the same equivalence class of ≈a
S , then a ·aba and a ·b have

to be in the same equivalence class of vL first. It is easy to see that the decomposition

(a, a) of aω is captured by the periodic FDFA and it is not captured by the syntactic

FDFA in Fig. 2 since M(a) = a , M(aa) = aa.

The syntactic FDFA constructed from Definition 4 may have redundant states for

some ω-regular languages. Take the DFAs Aε and Aa of the syntactic FDFA in Fig. 2

as examples, we can see that they both accept nothing but ≈εS and ≈a
S have 5 and 4

equivalent classes respectively. Therefore, Angluin and Fisman propose the recurrent

FDFA [1]. The progress DFA Au
R in the recurrent FDFA of an ω-regular language L

also accepts the regular language Ru = {v ∈ Σ+ | u vL uv ∧ uvω ∈ L} just the same as

the progress DFA Au
S of the syntactic FDFA. The difference is that Au

R is the minimal

DFA recognizing the regular language Ru.

Definition 5 (Recurrent FDFA [1]). Given anω-regular language L, the recurrent FDFA

F = (M, {Aq}) of L is defined as follows.

The leading automaton M is defined the same as in Definition 3.
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We define the right congruences ≈u
R for progress automata Au of the recurrent FDFA

respectively as follows:

x ≈u
R y iff ∀v ∈ Σ∗.(uxv vL u ∧ u(xv)ω ∈ L)⇐⇒ (uyv vL u ∧ u(yv)ω ∈ L).

The progress DFA Au is defined the similarly as in Definition 4 except that we use the

equivalence relation ≈u
R for the DFA construction.

Different from the syntactic FDFA which is associated to a Muller automaton [33], the

recurrent right congruence ≈u
R of the recurrent FDFA focuses on the regular language

Ru = {v ∈ Σ+ | u vL uv ∧ uvω ∈ L} the progress DFA Au should accept. The definition

of ≈u
R is an instantiation of the right congruence vRu for the regular language Ru where

x vRu y iff ∀v ∈ Σ∗.xv ∈ Ru ⇐⇒ yv ∈ Ru for x, y ∈ Σ∗. Indeed, for any x1, x2 ∈ Σ∗, we

have that x1 ≈
u
R x2 iff x1 vRu x2. Therefore, we can see that the right congruences ≈εR

and ≈a
R of L = aω + abω in Fig. 2 both have only one equivalent class, which is the only

equivalent class needed for the empty language.

As mentioned before, we learn a BA by learning an FDFA since there is no cor-

responding right congruences for BAs. As you will see in Sect. 7, learning a small

canonical FDFA often means the learned BA will be small. The reason why we keep

both the periodic FDFA and the recurrent FDFA for the BA learning algorithm in the

paper is due to the following facts in [1] when we fix an ω-regular language L and

compare the number of states in each canonical FDFA.

• We mentioned before that the periodic FDFA can be exponentially larger than

the syntactic FDFA for some ω-regular language.

• The corresponding recurrent FDFA is at least not larger than the corresponding

syntactic FDFA.

• There exists some ω-regular language L such that the corresponding recurrent

FDFA is larger than the corresponding periodic FDFA.

Thus, we consider both the periodic FDFA and the recurrent FDFA in the BA learning

algorithm since the recurrent FDFA and the periodic FDFA are incomparable regarding

the number of states. The reason why we keep the syntactic FDFA in the paper is that
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according to our experiments, learning Büchi automata by the syntactic FDFAs per-

forms quite well in practice and we observe that the progress right congruences of the

syntactic FDFA have stronger ability to discover new states in the learning procedure

than its other counterparts, see Fig. 6 in Sect. 6.1.

In the following, we present Proposition 1 to show all the three canonical FDFAs

accept a kind of ultimately periodic words of L.

Proposition 1. Let L be an ω-regular language, F = (M, {Au}) the corresponding

periodic (syntactic, recurrent) FDFA and u, v ∈ Σ∗. We have that if (u, v) is accepted

by F then (u, vk) is also accepted by F for any k ≥ 1.

Proof. Let ũ = M(u) and ṽk = Aũ(vk) , then we have that vk ≈ũ
K ṽk for every k ≥ 1

where K ∈ {P, S ,R}. This is because ṽk = Aũ(ṽk) = Aũ(vk) which makes vk in the

equivalence class [ṽk]. Our goal is to prove that (u, vk) is also accepted by F , that

is, uvk vM u and ṽk is an accepting state for every k ≥ 1. Given a canonical FDFA

F = (M, {Au}) recognizing ω-regular language L,we say vM and vL are consistent iff

for any x, y ∈ Σ∗, x vM y ⇔ x vL y. Since vM and vL are consistent in the three

canonical FDFAs, so from the fact that (u, v) is accepted by F , we have that uv vM u,

i.e., uv vL u. It follows that uvk vL u for every k ≥ 1. Thus, the remaining proof is to

show that ṽk is an accepting state for every k ≥ 1 in the three canonical FDFAs.

• For periodic FDFA, since (u, v) is accepted by F , i.e., ṽ = Aũ(v) is an accepting

state in Aũ, then we have ũ(ṽ)ω ∈ L according to Definition 3. By definition of

≈ũ
P and the fact that ṽ ≈ũ

P v, we have that ũ(v)ω ∈ L, i.e., ũ(vk)ω ∈ L for every

k ≥ 1. Similarly, since ũ(vk)ω ∈ L and vk ≈ũ
P ṽk, we conclude that ũ(ṽk)ω ∈ L,

which means that the state ṽk is an accepting state in Aũ for every k ≥ 1.

• By the definition of ≈ũ
R, if x ≈ũ

R y, then we have ũx vL ũ ∧ ũxω ∈ L ⇐⇒ ũy vL

ũ ∧ ũyω ∈ L for any x, y ∈ Σ∗. Since x ≈ũ
S y implies x ≈ũ

R y, we also have above

result if x ≈ũ
S y. In the following, ≈ũ

K can be replaced by ≈ũ
S and ≈ũ

R.

For syntactic FDFA and recurrent FDFA, if (u, v) is accepted by F , then ũṽ vL ũ

and ũ(ṽ)ω ∈ L according to Definition 4 and Definition 5. By the fact that v ≈ũ
K ṽ,
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if we set x = v and y = ṽ, then we have that ũv vL ũ and ũ(v)ω ∈ L, which implies

that ũvk vL ũ and ũ(vk)ω ∈ L for every k ≥ 1.

Similarly, as vk ≈ũ
K ṽk, if we set x = vk and y = ṽk, we have that ũṽk vL ũ and

ũ(ṽk)ω ∈ L, which follows that ṽk is an accepting state in Aũ for every k ≥ 1.

�

Lemma 1 ([1]). Let F be a periodic (syntactic, recurrent) FDFA of an ω-regular lan-

guage L. Then UP(F ) = UP(L).

Lemma 2 ([45]). Let F be a periodic (syntactic, recurrent) FDFA of an ω-regular

language L. One can construct a BA recognizing L from F .

4. Büchi Automata Learning Framework based on FDFA

M
em

ber
E

quivalence

FDFA learner FDFA teacher

B
A

teacher

Table-based [1] (Sect.5)

Tree-based (Sect. 6)

• Periodic FDFA

• Syntactic FDFA

• Recurrent FDFA

FDFA F to BA B (Sect. 7)

• Under-Approximation B

• Over-Approximation B

Analyze CE (Sect. 8)

• Under-Approximation B

• Over-Approximation B

F

MemFDFA(u, v) MemBA(uvω)

yes/no

EquFDFA(F) EquBA(B)

yes

Output a BA/LDBA recognizing the target language

no + uvωno +(u′, v′)

BA learner

Figure 3: Overview of the learning framework based on FDFA learning. The components in boxes

are results from existing works. The components in boxes are our new contributions.

We begin with an introduction of the framework of learning BA (respectively,

LDBA) recognizing an unknown ω-regular language L.

Overview of the framework: First, we assume that we already have a BA teacher

who knows the unknown ω-regular language L and answers membership and equiv-

alence queries about L. More precisely, a membership query MemBA(uvω) asks if
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uvω ∈ L. For an equivalence query EquBA(B), the BA teacher answers “yes” when

L(B) = L, otherwise it returns “no” as well as a counterexample uvω ∈ L	 L(B), which

is possible due to Theorem 1.

The framework depicted in Fig. 3 consists of two components, namely the FDFA

learner and the FDFA teacher. Note that one can place any FDFA learning algorithm

to the FDFA learner component. For instance, one can use the FDFA learner from

[1] which employs a table to store query results, or the FDFA learner using a classi-

fication tree proposed in this paper. The FDFA teacher can be any teacher who can

answer membership and equivalence queries about an unknown FDFA. Note that the

red dashed rounded box is the BA learner we proposed in this paper.

FDFA learners: The FDFA learners component will be introduced in Sect. 5 and

Sect. 6. We first briefly review the table-based FDFA learning algorithms [1] in Sect. 5.

Our tree-based learning algorithm for canonical FDFAs will be introduced in Sect. 6.

The algorithm is inspired by the tree-based L∗ learning algorithm [3]. Nevertheless,

applying the tree structure to learn FDFAs is not a trivial task. For example, instead

of a binary tree used in [3], we need to use a K-ary tree to learn syntactic FDFAs.

The use of K-ary tree complicates the procedure of refining the classification tree and

automaton construction. More details will be provided in Sect. 6.

FDFA teacher: The task of the FDFA teacher is to answer queries MemFDFA(u, v)

and EquFDFA(F) posed by the FDFA learner. Answering MemFDFA(u, v) is easy. The

FDFA teacher just needs to redirect the result of MemBA(uvω) to the FDFA learner.

Answering equivalence query EquFDFA(F) is more tricky.

From an FDFA F to a BA B: The FDFA teacher needs to transform an FDFA F to

a BA B to pose an equivalence query EquBA(B). In Sect. 7, we show that, in general, it

is impossible to build a BA B from an FDFA F such that UP(L(B)) = UP(F). There-

fore in Sect. 7, we propose two methods to approximate UP(F), namely the under-

approximation method and the over-approximation method. As the name indicates,

the under-approximation (respectively, over-approximation) method constructs a BA B

from F such that UP(L(B)) ⊆ UP(F) (respectively, UP(F) ⊆ UP(L(B))). The under-

approximation method is modified from the algorithm in [32]. Note that if the FDFAs

are the canonical representations, the BAs built by the under-approximation method
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recognize the same ultimately periodic words as the FDFAs, which makes it a com-

plete method for BA learning (Lemma 1 and Lemma 2). As for the over-approximation

method, we only guarantee to get a BA B such that UP(L(B)) = UP(F) if the F is a

special kind of canonical FDFAs, which thus makes our learning algorithm with over-

approximation method an incomplete algorithm. Nevertheless, in the worst case, the

over-approximation method produces a BA whose number of states is only quadratic

in the size of the FDFA. In contrast, the number of states in the BA constructed by the

under-approximation method is cubic in the size of the FDFA.

Counterexample analysis: If the FDFA teacher receives “no” and a counterexample

uvω from the BA teacher, the FDFA teacher has to return “no” and a valid decomposi-

tion (u′, v′) that can be used by the FDFA learner to refine F. In Sect. 8, we show how

the FDFA teacher chooses a pair (u′, v′) from uvω that allows FDFA learner to refine

the current FDFA F. As the dashed line with a label F in Fig. 3 indicates, we use the

current conjectured FDFA F to analyze the counterexample. The under-approximation

method and the over-approximation method of FDFA to BA translation require differ-

ent counterexample analysis procedures. More details will be provided in Sect. 8.

Once the BA teacher answers “yes” for the equivalence query EquBA(B), the FDFA

teacher will terminate the learning procedure and outputs a BA recognizing L. We

remark that the output Büchi automaton can be a nondeterministic Büchi automaton or

a limit deterministic Büchi automaton.

5. Table-based Learning Algorithm for FDFAs

In this section, we briefly introduce the table-based learner for FDFAs [1] under the

assumption that we have an FDFA teacher who knows the target FDFA. It employs a

structure called observation table [4] to organize the results obtained from queries and

propose candidate FDFAs. The table-based FDFA learner simultaneously runs several

instances of DFA learners. The DFA learners are very similar to the L∗ algorithm [4],

except that they use different conditions to decide if two strings belong to the same

state (based on Definition 3, 4 and 5). More precisely, the FDFA learner uses one DFA

learner L∗M for the leading automaton M, and for each state u in M, one DFA learner L∗Au
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for each progress automaton Au. The table-based learning procedure works as follows.

The learner L∗M first closes the observation table by posing membership queries and

then constructs a candidate for leading automaton M. For every state u in M, the table-

based algorithm runs an instance of DFA learner L∗Au to find the progress automaton Au.

When all DFA learners propose candidate DFAs, the FDFA learner assembles them to

an FDFA F = (M, {Au}) and then poses an equivalence query for it. The FDFA teacher

will either return “yes” which means the learning algorithm succeeds or return “no”

accompanying with a counterexample. Once receiving the counterexample, the table-

based algorithm will decide which DFA learner should refine its candidate DFA. We

refer interested readers to [1] for more details of the table-based algorithm.

6. Tree-based Learning Algorithm for FDFAs

In this section, we provide our tree-based learning algorithm for FDFAs and we

also assume that we have an FDFA teacher knowing the target FDFA. To that end, we

first define the classification tree structure for FDFA learning in Sect. 6.1 and present

the tree-based algorithm in Sect. 6.2.

6.1. Classification Tree Structure in Learning

Here we present our classification tree structure for FDFA learning. Compared to

the classification tree defined in [3], ours is not restricted to be a binary tree. Formally,

a classification tree is a tuple T = (N, r, Ln, Le) where N = I ∪ T is a set of nodes

consisting of the set I of internal nodes and the set T of terminal nodes, the node r ∈ N

is the root of the tree, Ln : N → Σ∗∪(Σ∗×Σ∗) labels an internal node with an experiment

and a terminal node with a state. Intuitively, on learning a target automaton, a state

u ∈ Σ∗ is the representative of a unique state in the target automaton we have discovered

so far and if there are two words u, u′ ∈ Σ∗ such that u , u′ and they are representatives

of different states in the target automaton, then we can always find an experiment to

distinguish u and u′ according to the right congruence of the target automaton. For

instance, we are learning the periodic FDFA of the language L = aω + abω depicted

in Fig. 2, then in the leading automaton M, finite words a and b will be the states in
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the classification tree for the leading automaton M and we have that a and b can be

distinguished by an experiment (a, a) since a ·aaω ∈ L while b ·aaω < L. We notice that

in the classification tree for the leading automaton M, the experiments are ultimately

periodic words represented by a decomposition, i.e., a pair of finite words, while the

experiments in the classification trees for the progress automata are finite words. The

function Le : I × D → N maps a parent node and a label to its corresponding child

node, where the set of labels D will be specified below.

During the learning procedure, we maintain a leading tree T for the leading au-

tomaton M, and for every state u in M, we keep a progress tree Tu for the progress

automaton Au. For every classification tree, we define a tree experiment function

TE : Σ∗ × (Σ∗ ∪ (Σ∗ × Σ∗)) → D. Intuitively, TE(x, e) computes the entry value at

row (state) x and column (experiment) e of an observation table in table-based learning

algorithms and note TE(x, e) takes all possible inputs from Σ∗ × (Σ∗ ∪ (Σ∗ × Σ∗)). Note

that since the experiments for the leading tree and the progress trees are different, we

actually have TE : Σ∗ × (Σ∗ × Σ∗) → D for the leading tree and TE : Σ∗ × Σ∗ → D for

the progress trees. The labels of nodes in the classification tree T satisfy the following

invariants: Let t ∈ T be a terminal node labeled with a state x = Ln(t). Let t′ ∈ I

be an ancestor node of t labeled with an experiment e = Ln(t′). Then the child of t′

following the label TE(x, e), i.e., Le(t′,TE(x, e)), is either the node t or an ancestor

node of t. Figure 4 depicts a leading tree T of the leading automaton M in Fig. 2 for

L = aω+abω . The dashed line is for the F label and the solid one is for the T label. The

tree experiment function TE : Σ∗ × (Σ∗ × Σ∗) → {F,T} is defined as TE(u, (x, y)) = T

iff uxyω ∈ L where u, x, y ∈ Σ∗. There are four internal nodes, namely i1, i2, i3 and i4,

and five terminal nodes, namely t1, t2, t3, t4, and t5. One can check that all nodes of T

indeed satisfy aforementioned invariants. For instance, let t = t2 be the terminal node

and we have x = Ln(t) = ab. t2 has two ancestors, namely i1 and i2. Let t′ = i1 and

we have e = Ln(t′) = (ε, a). The child of t′ following the label TE(ab, (ε, a)) = F is i2,

which is an ancestor of t2.

Leading tree T : The leading tree T for M is a binary tree with labels D = {F,T}.

The tree experiment function TE(u, (x, y)) = T iff uxyω ∈ L (recall the definition of vL

in Sect. 2) where u, x, y ∈ Σ∗. Intuitively, each internal node n in T is labeled by an
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i1(ε, a)

i2(ε, b) i3 (b, b)

t1b t2ab i4(ab, b) t3 a

t4aa t5 ε

T = ({i1, i2, i3, i4, t1, t2, t3, t4, t5}, i1, Ln, Le)

Figure 4: An example of leading classification tree T for L = aω + abω.

experiment xyω represented as (x, y). For any word u ∈ Σ∗, uxyω ∈ L (or uxyω < L)

implies that the equivalence class of u lies in the T-subtree (or F-subtree) of n. One

example of the leading tree T for the leading automaton M from Fig. 2 is depicted in

Fig. 4. One can see that every label of the terminal nodes corresponds to a state in M.

Progress tree Tu: The progress trees Tu and the corresponding function TE(x, e)

are defined based on the right congruences ≈u
P, ≈u

S , and ≈u
R of canonical FDFAs in

Definition 3, 4 and 5.

Periodic FDFA: The progress tree for the periodic FDFA is also a binary tree labeled

with D = {F,T}. The experiment function TE(x, e) = T iff u(xe)ω ∈ L where x, e ∈ Σ∗.

Intuitively, for any finite words u, u′ ∈ Σ∗ such that u 6≈u
P u′, there must exist some

experiment e ∈ Σ∗ such that TE(u, e) , TE(u′, e). For instance, the progress tree Taa

for the progress DFA Aaa of the periodic FDFA from Fig. 2 is depicted in Fig. 5. We

can see that TE(ε, a) = T since aa(εa)ω ∈ L while TE(b, a) = F since aa(ba)ω < L,

thus in Taa, the experiment a of the internal node i2 can distinguish states ε and b.

i1ε

i2a t3 a

t1b t2ε

Taa = ({i1, i2, t1, t2, t3}, i1, Ln, Le)

Figure 5: An example of progress classification tree Taa for L = aω + abω.
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Syntactic FDFA: The progress tree for the syntactic FDFA is a K-ary tree with la-

bels D = Q × {A,B,C} where Q is the set of states in the current leading automaton M

and K = 3|Q|. Note that when the current leading tree T is fixed, we can immediately

construct the corresponding leading automaton M by Definition 6 which will be given

in Sect. 6.2, thus we fix the current leading automaton M in the definition of TE func-

tion. For all x, e ∈ Σ∗, the experiment function TE(x, e) = (M(ux), t), where t = A iff

u = M(uxe)∧u(xe)ω ∈ L, t = B iff u = M(uxe)∧u(xe)ω < L, and t = C iff u , M(uxe).

For example, assume that M is constructed from the right congruence vL, for any

two states x and y such that TE(x, e) = TE(y, e) = (z, A), it must be the case that

ux vL uy because M(ux) = z = M(uy). Moreover, the experiment e cannot distinguish

x and y because uxe vL u vL uye and both u(xe)ω, u(ye)ω ∈ L.

For instance, the progress tree Taa for the progress DFA Aaa of the syntactic FDFA

from Fig. 2 is depicted in Fig. 6. In Fig. 6, the dashed line, the dotted line and the solid

line are labeled by Le with TE(a, ε) = (M(aaa), A) = (aa, A), TE(ε, ε) = (M(aaε), B) =

(aa, B) and TE(b, ε) = (M(aab),C) = (ab,C) respectively. Therefore, the experiment

ε of the internal node i1 is able to distinguish the states ε, a and b from each other,

while for the periodic and recurrent progress trees, at least two experiments are needed

to distinguish states ε, a and b.

i1ε

t1a t2 ε t3 b

Taa = ({i1, t1, t2, t3}, i1, Ln, Le)

Figure 6: The progress classification tree Taa for the syntactic FDFA of L = aω + abω.

Recurrent FDFA: The progress tree for the recurrent FDFA is a binary tree labeled

with D = {F,T}. The function TE(x, e) = T iff u(xe)ω ∈ L ∧ u = M(uxe) where

x, e ∈ Σ∗. The progress tree Taa for the progress DFA Aaa in the recurrent FDFA from

Fig. 2 is the same as the one depicted in Fig. 5.

20



6.2. Tree-based Learning Algorithm

The tree-based learning algorithm first initializes the leading treeT and the progress

tree Tε as a tree with only one terminal node r labeled by ε.

Definition 6. From a classification tree T = (N, r, Ln, Le), the learner constructs a

candidate of a leading automaton M = (Σ,Q, ε, δ) or a progress automaton Au =

(Σ,Q, ε, δ, F) as follows. The set of states is Q = {Ln(t) | t ∈ T }. Given s ∈ Q

and a ∈ Σ, the transition function δ(s, a) is constructed by the following procedure.

Initially the current node n := r. If n is a terminal node, it returns δ(s, a) = Ln(n).

Otherwise, it picks a unique child n′ of n with Le(n,TE(sa, Ln(n))) = n′, updates the

current node to n′, and repeats the procedure1. By Definition 3, 4 and 5, the set of

accepting states F of a progress automaton Au can be identified from the structure of

M with the help of membership queries where u is a state in the leading automaton

M. For the periodic FDFA, F = {v | uvω ∈ L, v ∈ Q} and for the syntactic and the

recurrent FDFA, F = {v | uv vM u, uvω ∈ L, v ∈ Q} where here Q is the state set of the

corresponding progress DFA Au.

Figure 7 depicts a periodic classification tree Ta and its corresponding progress

automaton Aa for L = aω + abω. The dashed line is for the F label and the solid

one is for the T label. The tree experiment function is defined as TE(x, y) = T iff

a(xy)ω ∈ L. To construct Aa = (Σ,Q, ε, δ, F) from Ta, one first has to construct the

state set Q = {ε, a, b, ab} by collecting all terminal labels in Ta. As for the transition

function, we give an example to further illustrate it. For instance, δ(b, a) is decided

by classifying the word ba to one of the terminal nodes in Ta. Starting with the root

i1, we have TE(ba, Ln(i1)) = TE(ba, ε) = F since a · (ba · ε)ω < L. Therefore, we

go to the F-child of i1, namely i2. Since i2 is not a terminal node and we have that

TE(ba, Ln(i2)) = TE(ba, b) = F, we go further to its F-child and finally reach the

terminal node ab. Thus, we conclude that δ(b, a) = ab. We collect the accepting states

1For syntactic FDFA, it can happen that δ(s, a) goes to a “new” terminal node. A new state for the FDFA

is identified in such a case.
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from Q by identifying the state v ∈ Q such that avω ∈ L according to the construction.

Therefore, we have F = {a, b} since aaω ∈ L and abω ∈ L.

i1ε

i2b i3 a

t1ab t2ε t3 b t4 a

Ta = ({i1, i2, i3, t1, t2, t3, t4}, i1, Ln, Le)

ε

a

b

ab

Aa a

b

a

b

b

a
a, b

Figure 7: An example of periodic progress classification tree Ta and periodic progress automaton Aa for

L = aω + abω.

Whenever the learner has constructed an FDFA F = (M, {Au}), it will pose an

equivalence query for F . If the teacher returns “no” and a counterexample (u, v), the

learner has to refine the classification tree and propose another candidate of FDFA.

Definition 7 (Counterexample for FDFA Learner). Given the conjectured FDFA F

and the target language L, we say that the counterexample

• (u, v) is positive if uv vM u, uvω ∈ UP(L), and (u, v) is not accepted by F ,

• (u, v) is negative if uv vM u, uvω < UP(L), and (u, v) is accepted by F .

We remark that in our case all counterexamples (u, v) from the FDFA teacher sat-

isfy the constraint uv vM u, which corresponds to the normalized factorization form

in [1]. One can check that our returned counterexample for FDFA learner constructed

in Sect. 8 respects Definition 7. The way we analyze the counterexamples is very sim-

ilar to the one used in the table-based FDFA learning algorithm [1] so we also follow

their way to present the counterexample analysis for the FDFA learner.

Counterexample guided refinement of F : Below we show how to refine the

classification trees based on a negative counterexample (u, v). The case of a positive

counterexample is symmetric. By definition, we have uv ∼M u, uvω < UP(L) and (u, v)
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is accepted by F . Let ũ = M(u), if ũvω ∈ UP(L), the refinement of the leading tree is

performed, otherwise ũvω < UP(L), the refinement of the progress tree is performed.

Refinement for the leading tree: In the leading automaton M of the conjectured

FDFA, if a state p has a transition to a state q via a letter a, i.e, q = M(pa), then pa has

been assigned to the terminal node labeled by q during the construction of M. If one

also finds an experiment e such that TE(q, e) , TE(pa, e), then we know that q and

pa should not belong to the same state in a leading automaton. W.l.o.g., we assume

TE(q, e) = F. In such a case, the leading tree can be refined by replacing the terminal

node labeled with q by a tree such that (i) its root is labeled by e, (ii) its left child is a

terminal node labeled by q, and (iii) its right child is a terminal node labeled by pa.

Below we discuss how to extract the required states p, q and experiment e. Let |u| =

n and s0s1 · · · sn be the run of M over u. Note that s0 = M(ε) = ε and sn = M(u) = ũ.

From the facts that (u, v) is a negative counterexample and ũvω ∈ UP(L) (the condition

to refine the leading tree), we have TE(s0, (u[1 · · · n], v)) = F , T = TE(sn, (ε, v)) =

TE(sn, (u[n + 1 · · · n], v)) because uvω < UP(L) and ũvω ∈ UP(L). Recall that we have

w[ j · · · k] = ε when j > k defined in Sect. 2. Therefore, there must exist a smallest

j ∈ [1 · · · n] such that TE(s j−1u[ j], (u[ j + 1 · · · n], v)) , TE(s j, (u[ j + 1 · · · n], v)). It

follows that we can use the experiment e = (u[ j + 1 · · · n], v) to distinguish q = s j and

pa = s j−1u[ j].

Example 1. Consider a conjectured FDFA F in Fig. 1 produced during the process of

learning L = aω + bω. The corresponding leading tree T and the progress tree Tε are

depicted on the left of Fig. 8. The dashed line is for the F label and the solid one is for

the T label. Suppose the FDFA teacher returns a negative counterexample (ab, b). The

leading tree has to be refined since M(ab)bω = bω ∈ L. We find an experiment (b, b)

to distinguish ε and a using the procedure above and update the leading tree T to T ′.

The leading automaton M constructed from T ′ is depicted on the right of Fig. 8.

Refinement for the progress tree: Recall that ũ · vω < UP(L) and thus the al-

gorithm needs to refine the progress tree Tũ. Let |v| = n and h = s0s1 · · · sn be

the corresponding run of Aũ over v. Note that s0 = Aũ(ε) = ε and sn = Aũ(v) =

ṽ. We have ũ(ṽ)ω ∈ UP(L) because ṽ is an accepting state. Assume that we have
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T

ε
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Tε

CE (ab, b)
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a ε
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ε a

M
a

b
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Figure 8: Refinement of the leading tree and the corresponding leading automaton

TE(s0v[1 · · · n], ε) = TE(v[1 · · · n], ε) , TE(sn, ε) = TE(sn, v[n + 1 · · · n]), there must

exist a smallest j ∈ [1 · · · n] such that TE(s j−1v[ j], v[ j+1 · · · n]) , TE(s j, v[ j+1 · · · n]).

It follows that we can use the experiment e = v[ j + 1 · · · n] to distinguish q = s j,

pa = s j−1v[ j] and refine the progress tree Tũ.

Therefore, the progress tree Tũ can be refined by replacing the terminal node la-

beled with s j by a tree such that (i) its root is labeled by e = v[ j + 1 · · · n], (ii) its

TE(s j, v[ j+1 · · · n])-subtree is a terminal node labeled by s j, and (iii) its TE(s j−1v[ j], v[ j+

1 · · · n])-subtree is a terminal node labeled by s j−1v[ j].

In order to establish above result, we have to show that TE(s0v, ε) , TE(sn, ε)

indeed holds.

• For the periodic FDFA, we have TE(v, ε) = F since ũ(v · ε)ω < UP(L). Since ṽ is

an accepting state, we have TE(ṽ, ε) = T.

• For the syntactic FDFA, we have that uv vM u according to Definition 7, that is,

ũ = M(uv) = M(u) = M(ũv).

First, we have TE(v, ε) = (M(ũ · v),B) = (ũ,B), where B is obtained here since

ũ = M(ũ · v · ε) and ũ(v · ε)ω < UP(L) according to the definition of TE in the

syntactic FDFA.

Since ṽ is an accepting state in the current syntactic FDFA, it follows that ũ =

M(ũṽ) and ũ(ṽ)ω ∈ L according to Definition 4. Thus, we have TE(ṽ, ε) =

(M(ũṽ),A) = (ũ,A) where A is obtained since ũ = M(ũ · ṽ · ε) and ũ(ṽ · ε)ω ∈

UP(L).

• For the recurrent FDFA, similar as in the syntactic FDFA, we have TE(v, ε) = F

and TE(ṽ, ε) = T.
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Optimization: Example 1 also illustrates the fact that the counterexample (ab, b)

may not be eliminated right away after the refinement. In this case, it is still a valid

counterexample (assuming that the progress tree Tε remains unchanged). Thus as an

optimization, one can repeatedly use the counterexample until it is eliminated.

We introduce an immediate result of the counterexample guided refinement for F

as Lemma 3. It shows that the tree-based learning algorithm will make progress upon

receiving a counterexample, which is an important property for the termination of the

learning algorithm.

Lemma 3. During the learning procedure, if the tree-based FDFA learner receives a

counterexample (u, v), then there will be a new state added to the leading automaton

M or the corresponding progress automaton Aũ where ũ = M(u).

7. From FDFA to Büchi Automata

ε

M a

b

ε a

b

Aε

a

b

b

a
a b

Figure 9: An FDFA F such that UP(F ) does not

characterize an ω-regular language

Since the FDFA teacher exploits the BA

teacher for answering equivalence queries, it

needs first to convert the given FDFA into a

BA. Unfortunately, with the following exam-

ple, we show that in general, it is impossible

to construct a precise BA B for an FDFA F

such that UP(L(B)) = UP(F ).

Example 2. Consider a non-canonical FDFAF in Fig. 9, we have UP(F ) =
⋃∞

n=0{a, b}
∗·

(abn)ω. We assume that UP(F ) characterizes anω-regular language L. It is known that

the periodic FDFA recognizes exactly the ω-regular language and the index of each

right congruence is finite [1]. However, we can show that the right congruence ≈εP of

a periodic FDFA of L, if exists, has to be of infinite index. Observe that abk 6≈εP ab j for

any k, j ≥ 1 and k , j, because ε · (abk · abk)ω ∈ UP(F ) and ε · (ab j · abk)ω < UP(F ).

It follows that ≈εP is of infinite index. We conclude that UP(F ) cannot characterize an

ω-regular language.
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Therefore, in general, we cannot construct a BA B from an FDFA F such that

UP(L(B)) = UP(F ). We propose a BA B, which underapproximates the ultimately pe-

riodic words of an FDFA. For the under-approximation method, upon receiving a coun-

terexample from the BA teacher each time, our FDFA teacher can always find a valid

counterexample for FDFA learner defined in Definition 7 to refine the current FDFA.

Moreover, if F is a canonical FDFA, the under-approximation method guarantees to

construct a BA B such that UP(L(B)) = UP(F ), which makes it a complete method

for BA learning. Another method is to construct a BA B which overapproximates the

ultimately periodic words of the FDFA F . For the over-approximation method, given

a canonical FDFA F , that whether UP(L(B)) = UP(F ) is still unknown and it can be

incomplete in the sense that it may not be able to find the valid counterexamples for

FDFA learner when dealing with counterexamples returned from the BA teacher. Nev-

ertheless, we show that the over-approximation method guarantees to construct a BA

B such that UP(L(B)) = UP(F ) for a special kind of canonical FDFA F . We keep the

over-approximation method since the size of the corresponding B is quadratic in the

size of the given FDFA while the size of B is cubic according to Lemma 5.

We first give the main idea behind the two approximation methods and then give

the formal definition of the methods in the following. Given an FDFA F = (M, {Au})

with M = (Σ,Q, q0, δ) and Au = (Σ,Qu, su, δu, Fu) for all u ∈ Q, we define Ms
v =

(Σ,Q, s, δ, {v}) and (Au)s
v = (Σ,Qu, s, δu, {v}), i.e., the DFA obtained from M and Au

by setting their initial state and accepting states as s and {v}, respectively. We define

N(u,v) = {vω | uv vM u ∧ v ∈ L((Au)su
v )}, which includes only the word v ∈ L((Au)su

v )

such that u = M(u) = M(uv). Therefore, according to Definition 2, we have that

UP(F ) =
⋃

u∈Q,v∈Fu
L(Mq0

u ) · N(u,v) where L(Mq0
u ) contains the finite prefixes and N(u,v)

contains the periodic finite words for every state pair (u, v).

We construct B and B by approximating the set N(u,v). For B, we first define an

FA P(u,v) = (Σ,Q(u,v), s(u,v), { f(u,v)}, δ(u,v)) = Mu
u × (Au)su

v and let N(u,v) = L(P(u,v))ω.

Then one can construct a BA (Σ,Q(u,v) ∪ { f }, s(u,v), { f }, δ(u,v) ∪ δ f ) recognizing N(u,v)

where f is a “fresh” state and δ f = {( f , ε, s(u,v)), ( f(u,v), ε, f )}. Note that ε transitions

can be taken without consuming any letters and can be removed by standard methods

in automata theory. Intuitively, we overapproximate the set N(u,v) as N(u,v) by adding
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(v1 · v2)ω into N(u,v) if (v1)ω ∈ N(u,v) and (v2)ω ∈ N(u,v) where v1, v2 ∈ Σ+. For B,

we define an FA P(u,v) = Mu
u × (Au)su

v × (Au)v
v and let N(u,v) = L(P(u,v))

ω. One can

construct a BA recognizing N(u,v) using a similar construction to the case of N(u,v).

Intuitively, we underapproximate the set N(u,v) as N(u,v) by only keeping vω ∈ N(u,v) if

Au(v) = Au(v · v) where v ∈ Σ+. In Definition 8 we show how to construct BAs B and B

s.t. UP(L(B)) =
⋃

u∈Q,v∈Fu
L(Mq0

u ) · N(u,v) and UP(L(B)) =
⋃

u∈Q,v∈Fu
L(Mq0

u ) · N(u,v).

Definition 8. Let F = (M, {Au}) be an FDFA where M = (Σ,Q, q0, δ) and Au =

(Σ,Qu, su, Fu, δu) for every u ∈ Q. Let (Σ,Q(u,v), s(u,v), { f(u,v)}, δ(u,v)) be a BA recog-

nizing N(u,v) (respectively N(u,v)). Then the BA B (respectively B) is defined as the

tupleΣ,Q ∪ ⋃
u∈Q,v∈Fu

Q(u,v), q0,
⋃

u∈Q,v∈Fu

{ f(u,v)}, δ ∪
⋃

u∈Q,v∈Fu

δ(u,v) ∪
⋃

u∈Q,v∈Fu

{(u, ε, s(u,v))}

 .
Intuitively, we connect the leading automaton M to the BA recognizing N(u,v) (re-

spectively N(u,v)) by linking the state u of M and the initial state s(u,v) of the BA with an

ε-transition for every state pair (u, v) where v ∈ Fu.

Figure 10 depicts the BAs B and B constructed from the FDFA F in Fig. 1. In the

example, we can see that bω ∈ UP(F ) while bω < UP(L(B)).

q0 q1 q2

q′2

B
a

b

ε a, b

a

b ε
ε

q0 q1 q2

q3

q′2

q4

B
a

b

ε a

b

a

b

ε

a
b a, b

ε

Figure 10: NBA B and B for F in Fig. 1

In the following, we introduce Lemma 4, which will be used to prove Lemma 5.

Lemma 4. Given an FDFA F = (M, {Au}), and B the BA constructed from F by Defi-

nition 8. If (u, vk) is accepted by F for every k ≥ 1, then uvω ∈ UP(L(B)).
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sũ f f ′

j ≥ i
vi

v j−i

vi

sũ f f ′

j < i
vi

vc

v j−c

Figure 11: Finding vk . If j ≥ i, we let k = j, otherwise let c = (l · j − i) ⊕ j ≥ 0 where k = l · j ≥ i for some

l ≥ 1 and recall that ⊕ is the standard modular arithmetic operator.

Proof. From the assumption that (u, vk) is accepted by F for every k ≥ 1, we have

uvk vM u and vk ∈ L(Aũ) for any k ≥ 1 where ũ = M(u) by Definition 2. Recall that

Mũ
ũ is obtained from M by setting its initial and final state to ũ. It follows that

vk ∈ L(Mũ
ũ) (1)

for every k ≥ 1 since uvk vM u. It must be the case that some accepting state, say f

in Aũ, will be visited twice after we read vn from initial state for some n > |Aũ| with

f = Aũ(vn) since Aũ is a DFA. In other words, there is a loop in the run of Aũ over

vn. Without loss of generality, suppose there exist i, j ≥ 1 with i + j = n such that

f = Aũ(vi) = Aũ(vi+ j) , which is depicted in Fig. 11.

In the following, our goal is to find some accepting state f ′ in the loop such that

f ′ = Aũ(vk) = Aũ(v2k) for some k ≥ 1. Figure 11 shows how to find the accepting state

f ′ along the loop in following two cases.

• j ≥ i. Let k = j.

• j < i. Let k = l · j such that k ≥ i with the smallest l ≥ 1.

It is easy to check that Aũ(vk) = Aũ(v2k) since progress automaton Aũ is determinis-

tic and the corresponding state f ′ is an accepting state. Therefore we have that

vk ∈ L((Aũ)sũ
f ′ ) ∧ vk ∈ L(A f ′

f ′ ) (2)

From (1) and (2), we conclude that vk is accepted by the product P(ũ, f ′) of three

automata Mũ
ũ , (Aũ)sũ

f ′ and (Aũ) f ′

f ′ where sũ is the initial state of Aũ. In other words, the

ω-word uvω will be accepted in B since u · (vk)ω ∈ L(Mq0
ũ ) · (L(P(ũ, f ′)))

ω. Therefore we

complete the proof. �
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Lemma 5 (Sizes and Languages of B and B). LetF be an FDFA and B, B be the BAs

constructed from F by Definition 8. Let n and k be the numbers of states in the leading

automaton and the largest progress automaton of F . The number of states of B and B

are in O(n2k3) and O(n2k2), respectively. Moreover, UP(L(B)) ⊆ UP(F ) ⊆ UP(L(B))

and we have UP(L(B)) = UP(F ) when F is a canonical FDFA.

Proof. In the following, we prove the lemma by following cases.

• Sizes of B and B. In the under-approximation construction, for every state u in

M, there is a progress automaton Au of size at most k. It is easy to conclude that

the automaton P(u,v) is of size nk2 for every v ∈ Fu, thus B is of size n + nk ·

nk2 ∈ O(n2k3). The over-approximation method differs in the construction of the

automaton P(u,v) from the under-approximation method. It is easy to conclude

that the automaton P(u,v) is of size nk for every v ∈ Fu. Therefore B is of size

n + nk · nk ∈ O(n2k2).

• UP(L(B)) ⊆ UP(F ). Let the ultimately periodic ω-word w be a word accepted

by B, i.e., w ∈ UP(L(B)) =
⋃

u∈Q,v∈Fu
L(Mq0

u ) · (L(P(u,v)))
ω. Therefore, there exists

some ũ and ṽ such that w = u · v1 · v2 · vn · · · where u ∈ L(Mq0
ũ ) and vi ∈ L(P(ũ,ṽ))

for every i ≥ 1. According to Definition 8, P(ũ,ṽ) is the product of three automata

Mũ
ũ , (Aũ)sũ

ṽ and (Aũ)ṽ
ṽ where sũ is the initial state in Aũ. It follows that

L(Mq0
ũ ) · (L(P(ũ,ṽ)))

∗ = L(Mq0
ũ ) (1)

and

(L(P(ũ,ṽ)))
+ = L(P(ũ,ṽ)) (2)

. L(Mq0
ũ ) · (L(P(ũ,ṽ)))

∗ = L(Mq0
ũ ) can be justified by the fact that L(P(ũ,ṽ)) ⊆ L(Mũ

ũ),

which implies that L(Mq0
ũ ) · (L(P(ũ,ṽ)))

∗ ⊆ L(Mq0
ũ ). Moreover, ε ∈ (L(P(ũ,ṽ)))

∗

and it follows that L(Mq0
ũ ) ⊆ L(Mq0

ũ ) · (L(P(ũ,ṽ)))
∗. Thus, we have proved that

(1) holds. Similarly, we can prove (L(P(ũ,ṽ)))
+ ⊆ L(P(ũ,ṽ)) by the facts that

(L((Aũ)ṽ
ṽ))+ ⊆ L((Aũ)ṽ

ṽ) and L(P(ũ,ṽ)) ⊆ L((Aũ)ṽ
ṽ). Together with the fact that

L(P(ũ,ṽ)) ⊆ (L(P(ũ,ṽ)))
+, we conclude that (2) holds.

By Lemma 5 in [32], let UV∗ = U and V+ = V where U,V ⊆ Σ∗. Then if

w ∈ UP(UVω), there must exist u ∈ U and v ∈ V such that w = uvω. Thus we
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let U = L(Mq0
ũ ) and V = L(P(ũ,ṽ)), we have that UV∗ = U (1) and V+ = V (2).

Since w ∈ L(UVω), there exist two words x ∈ L(Mq0
ũ ) and y ∈ L(P(ũ,ṽ)) such that

w = x · yω. In other words, we let ũ = M(x) and then we have xy vM x and

y ∈ L(Aũ) since x ∈ L(Mq0
ũ ), y ∈ L(Mũ

ũ) and L(P(ũ,ṽ)) ⊆ L(Aũ). It follows that w is

accepted by F .

• UP(F ) ⊆ UP(L(B)). Suppose an ω-word w ∈ UP(F ), then there exists a decom-

position (u, v) of w such that uv vM u and ṽ is an accepting state where ũ = M(u)

and ṽ = Aũ(v). It follows that u ∈ L(Mq0
ũ ) since ũ = M(u). Further, we have

v ∈ L(P(ũ,ṽ)) since P(ũ,ṽ) = Mũ
ũ × (Aũ)sũ

ṽ according to Definition 8 where sũ is the

initial state of Aũ . It follows that u · vω ∈ L(Mq0
ũ ) · (L(P(ũ,ṽ)))ω ⊆ UP(L(B)).

• UP(L(B)) = UP(F ) if F is a canonical FDFA. For any FDFA F , we have

UP(L(B)) ⊆ UP(F ). Thus, the remaining job is to prove that UP(F ) ⊆ UP(L(B))

ifF is a canonical FDFA, which directly follows from Proposition 1 and Lemma 4.

Thus, we complete the proof.

�

Lemma 7 introduces a special kind of canonical FDFA F for which the over-

approximation method produces a BA B such that UP(B) = UP(F ). We will first

introduce Lemma 6 to prove Lemma 7. Note that Lemma 6 is also used to analyze

counterexamples in Sect. 8.1.

Lemma 6. Given an FDFA F = (M, {Au}) and an ω-word w ∈ UP(L(B)) where B is

constructed from F by Definition 8. We can construct a decomposition (u, v) of w and

n ≥ 1 such that v = v1 · v2 · · · vn and for all i ∈ [1 · · · n], vi ∈ L(AM(u)) and uvi vM u.

Proof. Since we only consider ultimately periodic ω-words in B, every ω-word can be

given by one of its decomposition.

Since UP(L(B)) =
⋃

u∈Q,p∈Fu
L(Mq0

u ) · (L(P(u,p)))ω, suppose ω-word w = uvω ∈

UP(L(B)), then w can be given by a decomposition (u, v) such that u ∈ L(Mq0
ũ ) and

v ∈ (L(P(ũ,p)))+ for some p ∈ Fũ where ũ = M(u). Thus, we have v = v1 · · · vn for some

n ≥ 1 such that vi ∈ L(P(ũ,p)) for every 1 ≤ i ≤ n. In addition, since P(ũ,p) = Mũ
ũ×(Aũ)sũ

p ,
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we conclude that uvi vM u and vi ∈ L((Aũ)sũ
p ) for every 1 ≤ i ≤ n where sũ is the initial

state in Aũ.

Observe that p is the only accepting state of (Aũ)sũ
p and (Aũ)sũ

p is obtained from Aũ

by setting p ∈ Fũ as its only accepting state, we have that p = (Aũ)sũ
p (vi) = Aũ(vi) for

every 1 ≤ i ≤ n and p is an accepting state in Aũ.

The remaining job is how to find the accepting state p in Aũ. Suppose we have the

counterexample uvω given by the decomposition (u, v), from which we construct the

FA Du$v by the method in Sect. 8.2 where L(Du$v) = {u′$v′ | u′v′ω = uvω} and $ is

not a letter in Σ. We note that the number of states in Du$v is in O(|v|(|v| + |u|)) (see

Sect. 8.2). In addition, we can construct an FAA such that L(A) =
⋃

u∈Q,p∈Fu
L(Mq0

u ) ·

$ · (L(Mu
u × (Au)su

p ))+ where su is the initial state of Au. By fixing a state u in M and an

accepting state p of Au, we can construct an FA A(u,p) such that L(A(u,p)) = L(Mq0
u ) ·

$ · (L(Mu
u × (Au)su

p ))+ = L(Mq0
u ) · $ · (L(P(u,p)))+. Recall that in the overapproximation

construction, P(u,p) is defined as Mu
u × (Au)su

p . We can identify the corresponding u and

p such that L(A(u,p) × Du$v) , ∅. There must exist such u and p otherwise uvω will

not be accepted by B. To get all the fragment words vi from v, one only needs to run

the finite word v over P(u,p). The time and space complexity of this procedure are in

O(nk(n + nk) · (|v|(|v| + |u|))) and O((n + nk) · (|v|(|v| + |u|))) respectively where n is the

number of states in the leading automaton and k the number of states in the largest

progress automaton. Thus we complete the proof. �

Lemma 7. Given a canonical FDFA F = (M, {Au}), for any progress DFA Au in F

and any accepting state x of Au with x = Au(x1) = · · · = Au(xn) for n ≥ 1, we have

x1 · · · xn ∈ L(Au). Then UP(F ) = UP(L(B)) where B is a BA constructed from F by the

over-approximation method in Definition 8.

Proof. By Lemma 5, we have UP(F ) ⊆ UP(L(B)) for F . For any ω-word xyω ∈

UP(L(B)), by Lemma 6, we know there is a decomposition (u, v1 · · · vn) of xyω for some

n ≥ 1 such that for i ∈ [1 · · · n], vi ∈ L(AM(u)) and uvi vM u. From the assumption, we

know that v1 · · · vn ∈ L(AM(u)). It follows that uv1 · · · vn vM u and v1 · · · vn ∈ L(AM(u)),

which indicates that u(v1 · · · vn)ω is accepted by F . Therefore, xyω ∈ UP(F ), i.e., we

have UP(L(B)) ⊆ UP(F ). Thus, we complete the proof. �

31



Take the three canonical FDFAs depicted in 2, it is easy to see that all of them satisfy

Lemma 7. Therefore, we can also use over-approximation method to get the BAs which

recognize the ω-regular language aω + abω from them.

7.1. From FDFA to Limit Deterministic Büchi Automaton

Recall that in the under-approximation (respectively, over-approximation) method,

we need first construct an FA P(u,v) = Mu
u × (Au)su

v × (Au)v
v (respectively P(u,v) = Mu

u ×

(Au)su
v ) and then construct an NBA recognizing L(P(u,v))

ω (respectively, L(P(u,v))ω).

In this section, we show that we can construct a DBA A instead of a BA defined

in Definition 8 recognizing L(P(u,v))
ω (respectively, L(P(u,v))ω), which yields a limit

deterministic Büchi automaton from the given FDFA F .

To make our construction more general, in the following we construct a DBA A

with L(A) = L(D)ω from a DFA D with only one accepting state. One can check

that the FAs P(u,v) and P(u,v) from the under-approximation and the over-approximation

methods indeed are DFAs with one accepting state.

Definition 9. Given a DFA D = (Σ,Q, q0, q f , δ) where every state q ∈ Q can be

reached by q0 and can reach q f . The DBA A is a tuple (Σ,Q′, q0, {[q f ]} ∪ {(q f , q) |

q ∈ Q}, δ′) where

Q′ = Q ∪ (Q × Q) ∪ {[q] | q ∈ Q} ∪ {〈q〉 | q ∈ Q}

and δ′ is defined as follows where q, q′ ∈ Q and a ∈ Σ:

1.

δ′(q, a) =



δ(q, a) q , q f ;

(δ(q0, a), δ(q f , a)) q = q f ∧ δ(q0, a) , ∅ ∧ δ(q f , a) , ∅;

[δ(q0, a)] q = q f ∧ δ(q0, a) , ∅ ∧ δ(q f , a) = ∅;

〈δ(q f , a)〉 q = q f ∧ δ(q0, a) = ∅ ∧ δ(q f , a) , ∅.
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2.

δ′((q, q′), a) =



(δ(q, a), δ(q′, a)) q , q f ∧ δ(q, a) , ∅ ∧ δ(q′, a) , ∅;

〈δ(q′, a)〉 q , q f ∧ δ(q, a) = ∅ ∧ δ(q′, a) , ∅;

[δ(q, a)] q , q f ∧ δ(q, a) , ∅ ∧ δ(q′, a) = ∅;

(δ(q0, a), δ(q′, a)) q = q f ∧ δ(q0, a) , ∅ ∧ δ(q′, a) , ∅;

〈δ(q′, a)〉 q = q f ∧ δ(q0, a) = ∅ ∧ δ(q′, a) , ∅;

[δ(q0, a)] q = q f ∧ δ(q0, a) , ∅ ∧ δ(q′, a) = ∅.

3.

δ′([q], a) =



[δ(q, a)] q , q f ;

(δ(q0, a), δ(q f , a)) q = q f ∧ δ(q0, a) , ∅ ∧ δ(q f , a) , ∅;

[δ(q0, a)] q = q f ∧ δ(q0, a) , ∅ ∧ δ(q f , a) = ∅.

〈δ(q f , a)〉 q = q f ∧ δ(q0, a) = ∅ ∧ δ(q f , a) , ∅.

4.

δ′(〈q〉, a) =



〈δ(q, a)〉 q , q f ;

(δ(q0, a), δ(q f , a)) q = q f ∧ δ(q0, a) , ∅ ∧ δ(q f , a) , ∅;

[δ(q0, a)] q = q f ∧ δ(q0, a) , ∅ ∧ δ(q f , a) = ∅.

〈δ(q f , a)〉 q = q f ∧ δ(q0, a) = ∅ ∧ δ(q f , a) , ∅.

Note that the transition function δ may not be complete, i.e., δ(q, a) = ∅ for some q ∈ Q

and a ∈ Σ. Note that we also omit the cases such that δ′(q, a) = ∅ where q′ ∈ Q′ and

a ∈ Σ, such as δ′((q, q′), a) = ∅ when δ(q, a) = ∅ ∧ δ(q′, a) = ∅ with q, q′ ∈ Q and

a ∈ Σ. One can check that the definition δ′ is well defined in the sense that all possible

situations are taken account of.

Intuitively, suppose U = L(D) and K = L(Dq f
q f ) where Dq f

q f is obtained from DFA D

by setting q f as the initial state and the accepting state. We divide the language U ∪ K

into three parts, namely U\K = {u ∈ Σ∗ | u ∈ U ∧ u < K}, U ∩ K = {u ∈ Σ∗ | u ∈

U ∧ u ∈ K} and K\U = {u ∈ Σ∗ | u < U ∧ u ∈ K}.

Consider the run r of A over ω-word uω where u ∈ U. After reading u, r reaches

the accepting state q f and still wants to continue the run, and we try to make it starting
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from q0 again by starting at (q0, q f ). The first element q0 of the state pair performs

the same behaviors starting at the initial state q0, while the second element q f tries

to mimic the same behaviors by starting from the accepting state q f . If u ∈ U ∩ K,

then u can reach an accepting state (q f , q f ) by starting at state (q0, q f ). A finite word

u ∈ U\K may be detected in the run r by observing that if there exists some state

(q1, q2) = δ′((q0, q f ), u1) such that δ(q1, a) is defined and δ(q2, a) is not defined where

u = u1au2. In order to track the remaining behaviors of u, i.e., the word u2, we make

use of states in form of [q]. Similarly, a finite word u ∈ K\U may be detected by using

a symmetric argument. Therefore, we use states in form of 〈q〉 to keep track of the rest

behaviors of u in such a case. Moreover, every time we encounter the states [q f ], (q f , q)

and 〈q f 〉, we try to make them mimic the behaviors of q0 if possible. In this way, all the

ω-words visiting [q f ] or (q f , q) infinitely often can be rewritten as the concatenation of

infinitely many finite words which are accepted by D.

Theorem 2. Given a DFA D with a single accepting state and let A be the DBA con-

structed by Definition 9, then L(A) = L(D)ω.

Proof. Now we prove the theorem by two directions. Recall that we define U = L(D)

and K = L(Dq f
q f ). According to Theorem 1, we only consider ultimately periodic words

of ω-regular languages.

1. UP(Uω) ⊆ UP(L(A)). Let w = (u0u1 · · · ui · · · un)ω ∈ UP(Uω) where ui ∈ U for

any 0 ≤ i ≤ n and n ≥ 0. The goal is to prove that the corresponding run r of

A over w visits [q f ] or (q f , q) for infinitely many times for some state q ∈ Q.

According to the transition relation δ′, any state q ∈ Q will not be reached again

once r touches the accepting state q f . Starting from q0 after reading u0u1, it will

either stop at the state [q f ], 〈q f 〉 or state (q f , q) for some q ∈ Q. In the following,

we show that starting from state [q f ], 〈q f 〉 or state (q f , q), it will visit (q f , q)

or [q f ] at least once and stop at either [q f ], 〈q f 〉 or state (q f , q) after reading

arbitrary u ∈ U.

• If u ∈ U ∩ K, then δ′([q f ], u) = δ′(〈q f 〉, u) = δ′((q0, q f ), u) = (q f , q f ) and

δ′((q f , q), u) = (q f , p) for some p, q ∈ Q according to Definition 9.
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• Otherwise u ∈ U\K. According to Definition 9, upon reading word u, [q f ]

and 〈q f 〉 will restart at (q0, q f ), while (q f , q) will restart at (q0, q). After

reading u, the run r will either stop at [q f ] or (q f , q′) for some q′ ∈ Q. The

reason is that starting from the first element q0 of (q0, q f ) and (q0, q), the

run will not visit any states in form of 〈q〉 since u ∈ U\K.

Therefore, with infinitely many u ∈ U in w, the run r will visit some accepting

state in A infinitely often, which implies that w ∈ UP(L(A)).

2. UP(L(A)) ⊆ UP(Uω). Suppose ultimately periodic word w is accepted by A and

one of its corresponding run r is in the form of q0
u0
−→ q1

u1
−→ q2

u2
−→ · · · qh

uh
−→

qh+1
uh+1
−−−→ · · · qn−1

un−1
−−−→ qn

un
−→ qh where ui ∈ Σ+ and qi ∈ {(q f , p), [q f ], 〈q f 〉}

and p ∈ Q for every 1 ≤ i ≤ n and qh is the first accepting state which occurs

infinitely often. Here we have 1 ≤ h ≤ n. We remark that there is no state

q ∈ {(q f , p), [q f ], 〈q f 〉} between qi and qi+1 for every i ≥ 0. Since w is accepted

by A, we have that qh ∈ {[q f ], (q f , q)} for some state q ∈ Q.

The goal is to prove that w can be written as an ω-word v0v1v2 · · · vd(vd+1 · · · vm)ω

such that vi ∈ U for every 0 ≤ i ≤ m and m ≥ d ≥ 0. In the following, we explain

why it is possible to find finite word v ∈ U from the given run r.

• If there is a fragment run of r from qi to some state qi+1 in the form of [q f ]

or ([q f ], q) for some state q via finite word ui, which is depicted as follows.

qi
ui
−→ [q f ] or qi

ui
−→ ([q f ], q) (1)

In this situation, we let v = ui and according to the construction, we have

that ui is accepted by D, that is, v ∈ U.

• If there is a fragment run of r from qi to some state qi+1 in the form of 〈q f 〉

via finite word ui, then we should find all consecutive states in the form of

〈q f 〉 behind qi+1, which is depicted as follows.

qi
ui
−→ qi+1 = 〈q f 〉

ui+1
−−−→ · · ·

u j−1
−−−→ q j = 〈q f 〉

u j
−→ q j+1 ∈ {[q f ], (q f , q)} (2)

In this case, we let v = ui · ui+1 · · · u j−1. It is easy to verify that v ∈ U

according to the construction.
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Therefore, it follows that it is possible that we rewrite ω-word w into the specific

form we mentioned above. Therefore, since A is a DBA, for any ultimately

periodic word u0(u1)ω ∈ UP(L(A)), we can always decompose it into the form

v0 · · · vi(vi+1 · · · vn)ω such that vi ∈ U for every 0 ≤ i ≤ n.

�

Figure 12 gives an example for the DBA A constructed from the DFA D.

q0 q f

D
a

b

b

c

q0 q f [q0] [q f ] (q f , q f )

〈q f 〉

A
a

b a

b

c

a

b

a

b

c

ba

c

c

b

a

Figure 12: An example for the LDBA construction

Lemma 8 (Size of DBA). Given a DFA D with a single accepting state. Let Q be the

state set ofD and A be the DBA constructed by Definition 9, then the number of states

in A is in O(|Q|2).

Proof. The proof is trivial since the state set Q′ of A is defined as Q ∪ (Q × Q) ∪ {[q] |

q ∈ Q} ∪ {〈q〉 | q ∈ Q}. �

Corollary 1 (Sizes of LDBA). Let F be an FDFA and B, B be the LDBAs constructed

from F by replacing the BAs in Definition 8 with DBAs in Definition 9. Let n and k be

the numbers of states in the leading automaton and the largest progress automaton of

F . The number of states of B and B are in O(n3k5) and O(n3k3), respectively.

Proof. The sizes of P(u,v) and P(u,v) are in O(nk2) and O(nk) respectively. Thus the

sizes of DBAs recognizing N(u,v) and N(u,v) are in O(n2k4) and O(n2k2) respectively
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according to Lemma 8. Moreover, the number of (u, v) pairs are at most nk. Thus we

complete the proof. �

Corollary 2 (Languages of LDBA). Let F be an FDFA and Bd, Bd be the LDBAs

constructed from F by replacing the BAs in Definition 8 with DBAs in Definition 9. Let

B and B be the BAs constructed from F by Definition 8. Then we have that L(B) =

L(Bd) and L(B) = L(Bd).

Proof. The proof directly follows the construction for the LDBAs. �

8. Counterexample Analysis for FDFA Teacher

In this section, we first show how to extract valid counterexamples for the FDFA

learner from the counterexamples returned from the BA teacher and give their correct-

ness proofs in Sect. 8.1. Since the counterexample analysis makes use of three DFAs,

namely Du$v, D1 and D2 (see Sect. 8.1), we give the automaton construction for Du$v

in Sect. 8.2 and the automata constructions forD1 andD2 in Sect. 8.3 respectively.

8.1. Counterexample Analysis

During the learning procedure, if we failed the equivalence query for the BA B, the

BA teacher will return a counterexample uvω to the FDFA teacher.

Definition 10 (Counterexample for the FDFA Teacher). Given the conjectured BA

B ∈ {B, B}, the target language L, we say that

• uvω is a positive counterexample if uvω ∈ UP(L) and uvω < UP(L(B)),

• uvω is a negative counterexample if uvω < UP(L) and uvω ∈ UP(L(B)).

Obviously, the above is different to the counterexample for the FDFA learner in

Definition 7. Below we illustrate the necessity of the counterexample analysis by an

example.

Example 3. Again, consider the conjectured FDFA F depicted in Fig. 1 for L = aω +

bω. Suppose the BA teacher returns a negative counterexample (ba)ω. In order to
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Figure 13: The Case for Counterexample Analysis

remove (ba)ω ∈ UP(F ), one has to find a decomposition of (ba)ω that F accepts,

which is the goal of the counterexample analysis. Not all decompositions of (ba)ω are

accepted by F . For instance, (ba, ba) is accepted while (bab, ab) is not.

A positive (respectively negative) counterexample uvω for the FDFA teacher is

spurious if uvω ∈ UP(F ) (respectively uvω < UP(F )). Suppose we use the under-

approximation method to construct the BA B from F depicted in Fig. 10. The BA

teacher returns a spurious positive counterexample bω, which is in UP(F ) but not in

UP(L(B)). We show later that in such a case, one can always find a decomposition, in

this example (b, bb), as the counterexample for the FDFA learner.

Given FDFA F = (M, {Au}), in order to analyze the counterexample uvω , we define

three DFAs below:

• an FADu$v with L(Du$v) = {u′$v′ | u′ ∈ Σ∗, v′ ∈ Σ+, uvω = u′v′ω},

• an FAD1 with L(D1) = {u$v | u ∈ Σ∗, v ∈ Σ∗, uv vM u, v ∈ L(AM(u))}, and

• an FAD2 with L(D2) = {u$v | u ∈ Σ∗, v ∈ Σ∗, uv vM u, v < L(AM(u))}.

Here $ is a letter not in Σ. The constructions for the three DFAs will be introduced in

Sect. 8.2 and Sect. 8.3. Intuitively, Du$v accepts every possible decomposition (u′, v′)

of uvω, D1 recognizes every decomposition (u′, v′) which is accepted by F and D2

accepts every decomposition (u′, v′) which is not accepted by F yet u′v′ vM u′.

We use different counterexample analysis procedures for the under-approximation

method and the over-approximation method of FDFA to BA translation since our han-
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dling with the returned counterexample has to first identify which kind of the coun-

terexample is as in Fig. 13 and then deal with it accordingly as follows.

Given a BA B constructed by the under-approximation method to construct a BA

B from F , we have that UP(L(B)) ⊆ UP(F ). Figure 13(a) depicts all possible cases of

uvω ∈ UP(L(B)) 	 UP(L).

U1 : uvω ∈ UP(L) ∧ uvω < UP(F ) (square). The word uvω is a positive counterex-

ample, one has to find a decomposition (u′, v′) of uvω such that u′v′ vM u′ and

v′ ∈ L(AM(u′)). This can be easily done by taking a word u′$v′ ∈ L(Du$v)∩L(D2).

U2 : uvω < UP(L)∧uvω ∈ UP(F ) (circle). The word uvω is a negative counterexam-

ple, one needs to find a decomposition (u′, v′) of uvω that is accepted by F . This

can be done by taking a word u′$v′ ∈ L(Du$v) ∩ L(D1).

U3 : uvω ∈ UP(L) ∧ uvω ∈ UP(F ) (triangle). The word uvω is a spurious positive

counterexample. Suppose the decomposition (u, v) of uvω is accepted by F , ac-

cording to Lemma 4, there must exist some k ≥ 1 such that (u, vk) is not accepted

by F . Thus, we can also use the same method in U1 to get a counterexample

(u′, v′).

We can also use the over-approximation construction to get a BA B from F such

that UP(F ) ⊆ UP(L(B)), and all possible cases for a counterexample uvω ∈ UP(L(B))	

UP(L) is depicted in Fig. 13(b).

O1 : uvω ∈ UP(L) ∧ uvω < UP(F ) (square). The word uvω is a positive counterex-

ample that can be dealt with the same method for case U1.

O2 : uvω < UP(L) ∧ uvω ∈ UP(F ) (circle). The word uvω is a negative counterex-

ample that can be dealt with the same method for case U2.

O3 : uvω < UP(L) ∧ uvω < UP(F ) (triangle). In this case, uvω is a spurious neg-

ative counterexample. In such a case it is possible that we cannot find a valid

decomposition of uvω to refine F . By Lemma 6, we can find a decomposition

(u′, v′) of uvω such that v′ = v1v2 · · · vn, u′vi vM u′, and vi ∈ L(AM(u′)) for some

n ≥ 1. It follows that (u′, vi) is accepted by F . If we find some i ∈ [1 · · · n] such
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that u′vωi < UP(L), then we return (u′, vi), otherwise, we terminate the learning

procedure and report we are not able to find suitable counterexample to refine

the current FDFA.

Finally, we note that determining whether uvω ∈ UP(L) can be done by posing a

membership query MemBA(uvω), and checking whether uvω ∈ UP(F ) boils down to

checking the emptiness of L(Du$v) ∩ L(D1).

Lemma 9. Suppose the BA teacher returns a counterexample uvω. For underapprox-

imation method, we can always return a valid counterexample for the FDFA learner

(u′, v′). For overapproximation method, if counterexample analysis returns a decom-

position (u′, v′), then it is a valid counterexample for the FDFA learner.

Proof. Recall that M is the leading automaton of the FDFAF . Suppose the BA teacher

returns a counterexample uvω. We prove the lemma by following cases.

• Case U1 and O1: uvω ∈ UP(L) ∧ uvω < UP(F ). By Definition 7, we know that

uvω is a positive counterexample and we need to return a counterexample (u′, v′)

such that u′$v′ ∈ L(Du$v) ∩ L(D2). We first need to prove that L(Du$v) ∩ L(D2)

is not empty. Since uvω < UP(F ), then any decomposition of uvω, say (u, v),

is not accepted by F . Since M is a DFA, we can always find a decomposition

x = uvi and y = v j from some i ≥ 0, j ≥ 1 such that xy vM x according to

[1]. Therefore (x, y) is also a decomposition of uvω and it is not accepted by F ,

that is, y < L(Ax̃) where x̃ = M(x) and xy vM x. It follows that x$y ∈ L(D2)

according to Proposition 5 (introduced in Sect. 8.3). Thus, we conclude that

L(Du$v)∩ L(D2) is not empty. We let u′ = x and v′ = y, and it is easy to validate

that (u′, v′) is a positive counterexample for FDFA learner.

• Case U3: uvω ∈ UP(L) ∧ uvω ∈ UP(F ). In this case, uvω is a spurious positive

counterexample, which happens when we use the under-approximation method

to construct the Büchi automaton. Thus we need to return a counterexample

(u′, v′) such that u′$v′ ∈ L(Du$v) ∩ L(D2). Since uvω ∈ UP(F ), then there exists

some decomposition of uvω, say (u, v), is accepted by F . We observe that uvω <

UP(L(B)), which follows that there exists some k ≥ 1 such that (u, vk) is not
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accepted by F by Lemma 4. Together with uv vM u, we conclude that uvk vM

u since M is a DFA. It follows that u$vk ∈ L(D2) according to Proposition 5

(introduced in Sect. 8.3). Therefore, we conclude that L(Du$v) ∩ L(D2) is not

empty and for every finite word u′$v′ ∈ L(Du$v) ∩ L(D2), we have (u′, v′) is a

positive counterexample for FDFA learner.

• Case U2 and O2: uvω < UP(L) ∧ uvω ∈ UP(F ). In this case, uvω is a negative

counterexample, one has to return a counterexample (u′, v′) such that u′$v′ ∈

L(Du$v)∩L(D1). We first need to prove that L(Du$v)∩L(D1) is not empty. Since

uvω ∈ UP(F ), then there exists some decomposition (u′, v′) of uvω is accepted by

F . It follows that u′$v′ ∈ L(D1) according to Proposition 4. Thus we conclude

that L(Du$v) ∩ L(D1) is not empty. Moreover, it is easy to validate that (u′, v′) is

a negative counterexample for FDFA learner.

• Case O3: uvω < UP(L) ∧ uvω < UP(F ). In this case, uvω is a spurious negative

counterexample, which happens when we use the over-approximation method

to construct the Büchi automaton. It is possible that we cannot find a valid de-

composition (u′, v′) to refine F . According to the proof of Lemma 6, one can

construct a decomposition (u, v) of uvω and n ≥ 1 such that v = v1 · v2 · · · vn and

for all i ∈ [1 · · · n], vi ∈ L(AM(u)) and uvi vM u. If we find some i ≥ 1 such

that uvωi < UP(L), then we let u′ = u and v′ = vi. Clearly, (u′, v′) is a negative

counterexample for FDFA learner. �

8.2. From ω-word uvω to DFADu$v

In [32], they presented a canonical representation L$ = {u$v | u ∈ Σ∗, v ∈ Σ+, uvω ∈

L} for an ω-regular language L. In principle, we can apply their method to obtain the

Du$v automaton from an ω-word uvω. However, the number of states in their con-

structed DFA is in O(2|u|+|v|). In this section, we present a more effective method to

build the DFA Du$v such that L(Du$v) = {u′$v′ | u′ ∈ Σ∗, v′ ∈ Σ+, u′v′ω = uvω} for

a given ω-word uvω and the number of states in Du$v is in O(|v|(|v| + |u|)). A simi-

lar construction for Du$v has been proposed in [31], which first computes the regular

expression to represent all possible decompositions of uvω and then constructs a DFA

41



q0 q1 q2 q3

q4 q5 q6 q7

$

a

a
b

a
b

$ b
a

b

Figure 14: Du$v for ω-word (aba, ba)

from the regular expression. Compared to the construction in [31], ours is a direct

construction from an ω-word uvω to DFADu$v and we also give the complexity of the

construction.

We first give an example automaton Du$v for ω-word (ab)ω in Fig. 14. From the

example, we can find that both decompositions (aba, ba) and (ababa, bababa) have the

same suffix (ba)ω, which gives us the hint that the second element of a decomposition

can be simplified as long as we do not change the periodic word.

In the following, we denote by u E v to represent that u is a prefix of v, i.e., there

exists some j ≥ 1 such that u = v[1 · · · j]. We use u C v if u E v and u , v. We give the

definition of a smallest period in an ω-word w given by (u, v) where v ∈ Σ+.

Definition 11 (Smallest period). For any ω-word w given by (u, v), we say r is the

smallest period of (u, v) if r E v, rω = vω and for any t C r, tω , rω.

Take the ω-word (ab)ω as an example, ab and ba are the smallest periods of decompo-

sition (ab, ab) and (aba, ba) respectively. It is interesting to see that |ab| = |ba| and ab

can be transformed to ba by shifting the first letter of ab to its tail. We prove that in

Lemma 10, given an ω-word w, the length of its smallest period is fixed no matter what

decomposition of w is given.

Lemma 10. Given an ω-word w, (u, v) and (x, y) are different decompositions of w and

their corresponding smallest periods are r and t, respectively. Then we have that either

there exists j ≥ 2 such that r = t[ j · · · n] · t[1 · · · j − 1] or r = t where |t| = n.

Proof. According to Definition 11, w = uvω = urω = xyω = xtω. We prove it by
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(u, r) u[1]u[2] · · · u[k]u[k + 1] · · · u[m] · r · r · r · · ·
(x, t) x[1]x[2] · · · x[k]t[1] · · · · ·t[ j − 1] · z · z · z · · ·

contradiction. Without loss of generality, we assume that |r| > |t|. If |u| = |x|, we

conclude that rω = tω, which follows that r is not a smallest period of (u, v) since t C r.

Therefore |r| > |t| cannot hold in this case. Otherwise if |u| , |x|, we can either prove

that r = t or find some j ≥ 2 such that z = t[ j · · · n] · t[1 · · · j − 1] C r and zω = rω in

following cases. Recall that ⊕ is the standard modular arithmetic operator.

• |u| > |x|. Let k = (|u| − |x|) ⊕ |t| + 1. If k = 1, then z = t, otherwise j = k;

• |x| > |u|. Let k = (|r| − (|x| − |u|) ⊕ |r|) ⊕ |t| + 1. If k = 1, then z = t, otherwise

j = k;

We depict the situation where |u| > |x| in the following.

From the assumption |t| < |r|, we have that z C r. However, since zω = rω, we

conclude that r is not the smallest period of (u, v). Contradiction. Thus we complete

the proof. �

Lemma 10 shows that if the size of the smallest period of an ω-word w is n, then

there are exactly n different smallest periods for w. In the following, we define the

shortest form for a decomposition of an ω-word.

Lemma 11. For any decomposition (u, v) of an ω-word w, and y is its corresponding

smallest period, then we can rewrite u = xyi and v = y j for some i ≥ 0, j ≥ 1 such that

for any x′ E u with u = x′yk for some 0 ≤ k ≤ i, we have x′ = xyi−k. We say such (x, y)

is the shortest form for (u, v).

Proof. This can be proved by Definition 11 and the fact that yω = vω, which can be

further illustrated by the procedure of constructing (x, y). To find the shortest form

of (u, v), we need to first find the smallest period y of (u, v), which is illustrated by

following procedure. At first we initialize k = 1.

• Step 1. Let y = v[1 · · · k], we recursively check whether there exists some j ≥ 1

such that v = y j. If there exists such j, we return y as the smallest period.

Otherwise we go to Step 2.
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• Step 2. We increase k by 1 and go to Step 1.

Since k starts at 1, then y must be the smallest period of (u, v) such that vω = yω.

We find the above x of the shortest form in the following procedure.

• Step 1. Let x = u. If x = ε, or x = y then we return ε. Otherwise we check

whether there exists some k ≥ 1 such that x = x[1 · · · k] · x[k + 1 · · · |x|] and

y = x[k + 1 · · · |x|]. If there is no such k, we return x as the final result. Otherwise

we go to Step 2.

• Step 2. We set u = x[1 · · · k] and repeat the procedure.

One can easily conclude that x is the shortest prefix of u such that u = xyi for some

i ≥ 0. �

Following corollary is straightforward.

Corollary 3. Given two decompositions (u1, v1) and (u2, v2) of uvω. If (u1, v1) and

(u2, v2) share the smallest period y, then they also have the same shortest form (x, y)

where u1 = xyi, u2 = xy j for some i, j ≥ 0.

Proof (Sketch). If we assume they have different shortest forms, they should not be

two decompositions of the same ω-word. �

By Corollary 3, we can represent all decompositions of an ω-word w which share

the same smallest period y with (xyi, y j) with some i ≥ 0, j ≥ 1. In addition, since the

number of different smallest periods is |y|, we can thus denote all the decompositions

of w by the set
⋃|y|

k=1{(xkyi
k, y

j
k) | i ≥ 0, j ≥ 1} where (xk, yk) is the k-th shortest form of

w. Therefore, we provide the construction ofDu$v as follows.

8.2.1. The algorithm to constructDu$v

Now we are ready to give the construction of Du$v for a single ω-word w given by

(u, v). Suppose (x, y) is the shortest form of (u, v), then we construct Du$v as follows.

Let k = 1, n = |y|, and we first construct an automaton D1 such that L(D1) = xy∗$y+.

• Step 1. If k = n, then we construct the Du$v such that L(Du$v) =
⋃n

i=1 L(Di),

otherwise, we go to Step 2.
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• Step 2. We first increase k by 1. Let u′ = x · y[1] and y′ = y[2 · · · n] · y[1]. We

then get the shortest form (x′, y′) of (u′, y′) where the second element is y′ since

y′ is the smallest period of (u′, y′) according to Lemma 10. We then construct an

automaton Dk such that L(Dk) = x′y′∗$y′+ and let x = x′, y = y′ and go to Step 1.

Suppose |x| = m and |y| = n, the DFA A that accepts xy∗$y+ can be constructed as

follows.

• If m = 0, then we construct a DFA A = (Σ, {q0, · · · , q2n}, q0, {q2n}, δ) where we

have that δ(qk−1, y[k]) = qk when 1 ≤ k ≤ n − 1, δ(qn−1, y[n]) = q0, δ(q0, $) = qn,

δ(qn−1+k, y[k]) = qn+k when 1 ≤ k ≤ n, and δ(q2n, y[1]) = qn+1.

• Otherwise m ≥ 1, then we construct a DFA A = (Σ, {q0, · · · , q2n+m}, q0, {qm+2n}, δ)

where we have that δ(qk−1, x[k]) = qk when 1 ≤ k ≤ m, δ(qm−1+k, y[k]) = qm+k

when 1 ≤ k ≤ n − 1, δ(qm+n−1, y[n]) = qm, δ(qm, $) = qm+n, δ(qm+n+k−1, y[k]) =

qm+n+k when 1 ≤ k ≤ n, and δ(qm+2n, y[1]) = qm+n+1.

One can validate that L(A) = xy∗$y+ and the number of states in A is at most |x|+2|y|+1.

Proposition 2. Let Du$v be the DFA constructed from the decomposition (u, v) of ω-

word uvω, then L(Du$v) = {u′$v′ | u′ ∈ Σ∗, v′ ∈ Σ+, u′v′ω = uvω}.

Proof. • ⊆. This direction is easy since L(Du$v) =
⋃n

i=1 L(Di), we only need to

prove that for any 1 ≤ i ≤ n, if u′$v′ ∈ L(Di), then u′v′ω = uvω. Suppose

L(Di) = xiy∗i $y+
i , thus for any u′$v′ ∈ L(Di), we have u′ = xiy

j
i and v′ = yk

i for

some j ≥ 0, k ≥ 1. It follows that u′v′ω = uvω since xiyωi = uvω.

• ⊇. For any decomposition (u′, v′) of uvω, we can get its shortest form (x′, y′)

where y′ is the smallest period of (u′, v′) according to Lemma 11. Suppose (x, y)

is the first shortest form used in theDu$v construction. By Lemma 10, we prove

u′$v′ is accepted byDu$v as follows.

– y = y′. We have that u′ = xyi and v′ = y j for some i ≥ 0, j ≥ 1, thus

u′$v′ ∈ L(D1) ⊆ L(Du$v).
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– y′ = y[ j · · · n]y[1 · · · j − 1] for some j ≥ 2. We conclude that L(D j) =

x′y′∗$y′+ since the shortest form is unique if we fix the smallest period by

Corollary 3, which follows that u′$v′ ∈ L(D j) ⊆ L(Du$v).

Therefore, we complete the proof. �

Proposition 3. Given an ω-word w given by (u, v), then the automaton Du$v has at

most O(|v|(|u| + |v|) of states.

For every automaton Di such that L(Di) = xy∗$y+, the number of states in Di is at

most |u| + 2|r| + 2 where r is the smallest period of (u, v), thus the number of states in

Du$v is in O(|r| × (|r| + |u|)) ∈ O(|v|(|u| + |v|).

8.3. From FDFA F to DFAsD1 andD2

In this section, we provide the constructions for the DFAs D1 and D2 from a

given FDFA F = (M, {Au}). For a given state u in the leading DFA M, we de-

fine a DFA Au = (Σ,Qu, su,Qu \ Fu, δu) from its corresponding progress automaton

Au = (Σ,Qu, su, Fu, δu) such that L(Au) = Σ∗ \ L(Au). Note that the transition δu is

complete in the sense that δu(s, a) is defined for every s ∈ Qu, a ∈ Σ. To make the con-

structions simple, we define two automata Nu and Nu for every state u in the leading

automaton M as follows.

• For D1 construction, we define Nu = Mu
u × Au. Intuitively, we only keep the

words from L(Au) which can make a run start at u and go back to u in the leading

automaton. In other words, L(Nu) = {v ∈ Σ∗ | uv vM u, v ∈ L(Au)}.

• For D2 construction, we define Nu = Mu
u × Au. Similarly, we have L(Nu) = {v ∈

Σ∗ | uv vM u, v < L(Au)}.

Recall that Mu
u is obtained from M by setting the initial and final state to u. Formally,

the construction is defined as follows.

Definition 12. Let F = {M, {Au}} be an FDFA where M = (Σ,Q, q0, δ) and for every

u ∈ Q, the corresponding progress automaton Au = (Σ,Qu, su, Fu, δu). Let Nu (respec-

tively Nu) be given by (Σ,Qu, su, Fu, δu). The DFA D1 (respectively D2) is defined as
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Figure 15: D1 andD2 for F in Fig. 1

the tuple (Σ ∪ {$},Q ∪ QAcc, q0, F, δ ∪ δAcc ∪ δ$) where

QAcc =
⋃
u∈Q

Qu and F =
⋃
u∈Q

Fu and δAcc =
⋃
u∈Q

δu

δ$ = {(u, $, su) | u ∈ Q}

where $ is a fresh symbol.

Intuitively, we use the $ transitions to connect the leading DFA M and the DFAs

Nu (respectively Nu). In Fig. 15, we give the DFAs D1 and D2 constructed from F in

Fig. 1.

Proposition 4. Given an FDFA F = (M, {Au}) ,D1 is the DFA defined by Definition 12

from F . Then L(D1) = {u$v | u ∈ Σ∗, v ∈ Σ∗, uv vM u, ũ = M(u), v ∈ L(Aũ)}.

Proof. According to Definition 12, it is easy to show that for any u ∈ Σ∗, ũ = M(u) =

D1(u). Moreover, for any u, v ∈ Σ∗, we have that Nũ(v) = D1(u$v) where ũ = M(u)

since D1 is a DFA. In Sect. 2, we defined that (u, v) is accepted by F iff we have

uv vM u and v ∈ L(Aũ) where ũ = M(u). Therefore we only need to prove that u$v is

accepted byD1 iff (u, v) is accepted by F .

• ⊆. We prove that if (u, v) is accepted by F , then u$v ∈ L(D1). Since (u, v) is

accepted by F , that is, uv vM u and v ∈ L(Aũ), we have that v ∈ L(Nũ). It follows

that Nũ(v) is an accepting state. Since Nũ(v) = D1(u$v), we have thatD1(u$v) is

an accepting state. Therefore, u$v ∈ L(D1).

• ⊇. First, we have that L(D1) ⊆ Σ∗$Σ∗ by Definition 12. For any u, v ∈ Σ∗, if

u$v ∈ L(D1), then D1(u$v) is an accepting state. It follows that v ∈ L(Nũ) with
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ũ = M(u). Since Nũ = Mũ
ũ × Aũ, we have that v ∈ L(Mũ

ũ) and v ∈ L(Aũ), which

implies that uv vM u and v ∈ L(Aũ). Thus, we conclude that (u, v) is accepted by

F .

�

Proposition 5. Given an FDFA F = (M, {Au}),D2 is the DFA defined by Definition 12

from F . Then L(D2) = {u$v | u ∈ Σ∗, v ∈ Σ∗, uv vM u, ũ = M(u), v < L(Aũ)}.

Proof. Similar to the construction of D1, we have that for any u ∈ Σ∗, ũ = M(u) =

D2(u). For any u, v ∈ Σ∗, we have that N ũ(v) = D2(u$v) where ũ = M(u) sinceD2 is a

DFA.

• ⊇. Assume that we have uv vM u and v < L(Aũ) where ũ = M(u). By uv vM u,

we have that v ∈ L(Mũ
ũ). Further, we conclude that v ∈ L(Aũ) from the fact that

v < L(Aũ). It follows that Nũ(v) is an accepting state. Since N ũ(v) = D2(u$v),

thenD2(u$v) is also an accepting state. Therefore, u$v ∈ L(D2).

• ⊆. First, we have that L(D2) ⊆ Σ∗$Σ∗ by Definition 12. For any u, v ∈ Σ∗, if

u$v ∈ L(D2), then D2(u$v) is an accepting state. It follows that v ∈ L(N ũ) with

ũ = M(u). Since N ũ = Mũ
ũ × Aũ, we have that v ∈ L(Mũ

ũ) and v ∈ L(Aũ), which

implies that uv vM u and v < L(Aũ).

Proposition 6. The numbers of states inD1 andD2 are both in O(n + n2k).

Proof. Suppose n is the number of states in M and k is the number of states in the

largest progress automaton, then the numbers of states ofD1 andD2 are both in O(n +

n2k) according to Definition 12. �

9. Correctness and Complexity Analysis

In this section, we first discuss the correctness of the tree-based FDFA learning

algorithms in Sect 9.1 and then present the complexity in Sect. 9.2. Together with

the correctness of BA constructions and counterexample analysis, it leads to our main

result Theorem 4 in Sect. 9.2.
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9.1. Correctness of Tree-based FDFA Learning Algorithm

In the following, we fix an FDFA structure F = (M, {Au}) and its progress tree

(T , {Tu}). Lemma 12 establishes the correctness of our tree-based learning algorithm

for the periodic progress trees and the leading trees.

Lemma 12. Given an ω-regular language L, the tree-based learning algorithm will

never classify two finite words which belong to the same equivalence class into two

different terminal nodes in the leading tree and the periodic progress trees.

Proof. We prove by contradiction. Suppose there are two finite word x1, x2 ∈ Σ∗ which

are actually in the same equivalence class but they are currently classified into different

terminal nodes in classification tree T .

• T is the leading tree. We first have the premise x1 vL x2. Suppose x1 and x2 have

currently been assigned to terminal nodes t1 and t2 and t1 , t2. Therefore, we can

find the least common ancestor n from T , where Ln(n) = (y, v) is supposed to be

an experiment to differentiate x1 and x2. Without loss of generality, we assume

that t1 and t2 are in the left and right subtrees of n respectively. Therefore, we

have TE(x1, (y, v)) = F and TE(x2, (y, v)) = T. It follows that x1(yv)ω < UP(L)

and x2(yv)ω ∈ UP(L), which implies that x1 6vL x2. Contradiction.

• T = Tu is a progress tree in periodic FDFA. We have the premise x1 ≈
u
P x2.

Similarly, we assume that x1 and x2 have been assigned to terminal nodes t1

and t2 of Tu and t1 , t2. Therefore, we can find the least common ancestor

n from Tu, where Ln(n) = v is supposed to be an experiment to differentiate

x1 and x2. Without loss of generality, we assume that t1 and t2 are in the left

and right subtrees of n respectively. Therefore, we have TE(x1, v) = F and

TE(x2, v) = T. It follows that u(x1v)ω < UP(L) and u(x2v)ω ∈ UP(L), which

implies that x1 6≈
u
P x2. Contradiction.

�

Recall that in Definition 4 and 5, x ≈u
S y and x ≈u

R y are defined by using the right

congruence vL. In other words, the progress trees in the syntactic and recurrent FDFAs
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are constructed according to current leading automaton M. Therefore, the progress

trees can be correctly constructed if current leading automaton M is already consistent

with vL. We say a leading automaton M is consistent with vL iff for any x1, x2 ∈ Σ∗, we

have M(x1) = M(x2) ⇐⇒ x1 vL x2. We prove the correctness of tree-based learning

algorithms for the syntactic and the recurrent FDFAs by Lemma 13.

Lemma 13. Given an ω-regular language L, the tree-based algorithm will never clas-

sify two finite words which belong to the same equivalence class into two different

terminal nodes in the progress trees of the syntactic and the recurrent FDFA if the

leading automaton M is consistent with vL.

If the tree-based algorithm classifies two finite words which are actually in the

same equivalence class into two different terminal nodes in the progress trees, then M

is currently not consistent with vL.

Proof. Note that the progress treesTu in syntactic and recurrent FDFAs are constructed

with respect to the current leading automaton M where u is a state in M. We prove the

lemma in following cases by contradiction.

• Tu is a progress tree in syntactic FDFA. We first have the premise x1 ≈
u
S x2.

Suppose x1 and x2 have been assigned to different terminal nodes t1 and t2 of

Tu respectively. Therefore, we can find the least common ancestor n from Tu,

where Ln(n) = v is supposed to be an experiment to differentiate x1 and x2.

Thus, by the definition of TE in the syntactic FDFA defined in Sect. 6.2, we

let d1 := TE(x1, v) = (M(ux1),m1) and d2 := TE(x2, v) = (M(ux2),m2) where

m1,m2 ∈ {A, B,C}. Since t1 and t2 are in different subtrees of n, we thus have

d1 , d2, that is, M(ux1) , M(ux2) or m1 , m2. In order to prove the lemma, we

have to prove d1 , d2 does not hold in the following.

If M is consistent with vL, we prove d1 = d2 in the following cases.

– M(ux1) , M(ux2). Since x1 ≈
u
S x2, we have ux1 vL ux2 according to

the definition of ≈u
S in Definition 4. It immediately follows that M(ux1) =

M(ux2) since M is consistent with vL. Contradiction.
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– m1 , m2. Similarly, since x1 ≈
u
S x2, we have ux1 vL ux2. It follows that

M(ux1) = M(ux2) since M is consistent with vL. Moreover, we have that

M(ux1v) = M(ux2v) for any v ∈ Σ∗ since M is deterministic. We discuss

the equality of m1 and m2 for some v ∈ Σ∗ in the following two cases.

∗ u = M(ux1v). It follows that ux1v vL u since M is consistent with

vL, which immediately implies that u(x1v)ω ∈ UP(L) ⇐⇒ u(x2v)ω ∈

UP(L) according the definition of x1 ≈
u
S x2. Moreover, we have u =

M(ux2v) since ux1 vL ux2. Therefore, we conclude that m1,m2 ∈

{A, B} by the definition of TE in Sect. 6.2. Without loss of generality,

we let m1 = A and m2 = B, which implies that u(x1v)ω ∈ UP(L) while

u(x2v)ω < UP(L). Contradiction.

∗ u , M(ux1v). According to the definition of TE in Sect. 6.2, we have

m1 = m2 = C, which follows that d1 = dn since M(ux1) = M(ux2).

Contradiction.

Therefore, t1 and t2 cannot be different terminal nodes if M is consistent with vL.

• Tu is a progress tree in recurrent FDFA. The analysis is similar to the analysis

for the syntactic FDFA. We first have premise x1 ≈
u
R x2. Suppose x1 and x2 have

been assigned to different terminal nodes t1 and t2 of Tu respectively. Therefore,

we can find the least common ancestor n from Tu, where Ln(n) = v is supposed

to be an experiment to differentiate x1 and x2. Thus, we can assume that d1 :=

TE(x1, v) and d2 := TE(x2, v) where d1, d2 ∈ {F,T}. Since t1 and t2 are in

different subtrees of n, we thus have d1 , d2. Without loss of generality, we let

d1 = F and d2 = T. We first assume that M is consistent with vL. Since d2 = T,

we have that u = M(ux2v) and u(x2v)ω ∈ UP(L) according to the definition of TE

in Sect. 6.2. It follows that ux2v vL u since M is consistent with vL. Moreover,

we conclude that u = M(ux1v) and u(x1v)ω ∈ UP(L) by the fact that x1 ≈
u
R x2.

By the definition of TE, we have d1 = T. Contradiction. Therefore, t1 and t2

cannot be different terminal nodes.

From above analysis, we can also conclude that if the classification of equivalence

classes in the progress trees are not correct, then M is not consistent with vL. �
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We have already proved that the tree-based algorithm will not do any “bad” things,

that is, it will not classify two different words which actually belong to the same equiva-

lence class into different terminal nodes. In the following, we show that the tree-based

algorithm will do “good” things, namely making progress for learning the unknown

ω-regular language L.

Here we recall Lemma 3, which states that there will be a new state added to the

leading automaton M or the corresponding progress automaton Aũ after each refine-

ment step. Lemma 3 is a critical property for the termination of the tree-based FDFA

learning algorithm since it means that we either make progress for the leading automa-

ton or the corresponding progress automaton after every refinement.

In Lemma 13, we encounter a situation where the progress trees of the syntactic

and the recurrent FDFAs may classify two finite words which actually are in the same

equivalence class into different terminal nodes if M is not consistent with vL. One may

worry that if the FDFA teacher chooses to refine the progress automaton continually,

the learning algorithm may not terminate. Lemma 14 shows that it will terminate since

the number of equivalence classes of the progress automata with respect to current

leading automaton M is finite. More precisely, if we fix the leading automaton M, we

are actually learning a DFA induced by the right congruence ≈u
S ′ . We define x ≈u

S ′ y if

and only if M(ux) = M(uy) and for every v ∈ Σ∗, if M(uxv) = u, then u(xv)ω ∈ L ⇐⇒

u(xv)ω ∈ L. One can easily verify that x ≈u
S ′ y is a right congruence. We remark that if

M is consistent with vL, then x ≈u
S ′ y is equivalent to x ≈u

S y.

Lemma 14. Given the leading automaton M, then for every state u in M, the index of

≈u
S ′ is bounded by |Q| · | ≈u

P | where Q is the state set of M.

Proof. We use qi to denote the state which can be reached by u where 1 ≤ i ≤ |Q|.

Given a finite word x ∈ Σ∗, we classify x into an equivalence class of ≈u
S ′ as follows.

According to the definition of ≈u
S ′ , we can first find state qi = M(ux) for some 1 ≤

i ≤ |Q|. For every y ∈ Σ∗ such that qi , M(uy), x and y should not be in the same

equivalence class. Therefore, x can be first be classified into one of |Q| classes since

the number of possible qi is |Q|. Now we fix the qi, in order to distinguish x with finite

word y such that qi = M(uy), we have to check whether for ∀v ∈ Σ∗, if M(uxv) = u,
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then u(xv)ω ∈ L ⇐⇒ u(yv)ω ∈ L, which implies that whether x ≈u
P y holds. Thus we

can use (qi, [x]≈u
P
) to represent the equivalence class where x belongs to. Therefore, the

index of the right congruence ≈u
S ′ is |Q| · | ≈u

P |. �

Similarly, if we fix the leading automaton M and learn recurrent FDFA, we are

actually learning DFA induced by the right congruence ≈u
R′ defined as that x ≈u

R′ y iff

for every v ∈ Σ∗, M(uxv) = u∧u(xv)ω ∈ L⇐⇒ M(uyv) = u∧u(yv)ω ∈ L. Since x ≈u
S ′ y

implies x ≈u
R′ y, it follows that | ≈u

R′ | is smaller than | ≈u
S ′ |. The implication from

x ≈u
S ′ y to x ≈u

R′ y can be easily established by first assuming x ≈u
S ′ y and then conclude

that for any v ∈ Σ∗, we have that uyv vM u ∧ u(yv)ω ∈ L if uxv vM u ∧ u(xv)ω ∈ L.

First, assume that uxv vM u ∧ u(xv)ω ∈ L and x ≈u
S ′ y, one can easily conclude that

u(yv)ω ∈ L. In addition, one can combine the result ux vM uy from x ≈u
S ′ y and

assumption uxv vM u together to prove uyv vM u since M is deterministic and vM is

an equivalence relation.

Lemma 15. Given the leading automaton M, then for every state u in M, the index of

≈u
R′ is bounded by |Q| · | ≈u

P | where Q is the state set of M.

Theorem 3. Given the FDFA teacher that is able to answer membership and equiv-

alence queries about ω-regular language L for FDFA, the tree-based FDFA learning

algorithm will terminate and can learn the three canonical FDFAs.

Proof (Sketch). We prove the theorem by following cases.

• For the periodic FDFAs, together with Lemma 12 and Lemma 3, the tree-based

algorithm will terminate and learn the corresponding periodic FDFAF of L since

the number of states in F is finite.

• For the syntactic and the recurrent FDFAs, with Lemma 12 and Lemma 13, we

conclude that the tree-based algorithm can classify the finite words correctly if

the leading automaton M is consistent with vL. If M is not consistent with vL,

the FDFA teacher will be able to return a counterexample to refine current M. If

the leading automaton changes, the algorithm for the syntactic and the recurrent

FDFAs should learn all progress automata from scratch with respect to current
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leading automaton M and the learning procedure for progress automata will ter-

minate which is justified by Lemma 3, Lemma 14 and Lemma 15. At some

point, the leading automaton M will be consistent with vL since its states num-

ber increases after every refinement. Thus, the learning algorithm will terminate

since the numbers of states in the corresponding syntactic FDFAs and recurrent

FDFAs of L are finite.

Therefore, we complete the proof. �

9.2. Complexity for Tree-based Learning Algorithm

In the following, we denote by F = (M, {Au}) the corresponding periodic FDFA

of the unknown ω-regular language L. In this section, we let n be the number of

states in the leading automaton M and k be the number of states in the largest progress

automaton Au unless stated otherwise. We remark that F is uniquely defined for L and

the table-based algorithm needs the same amount of equivalence queries as the tree-

based one in the worst case. Given a counterexample (u, v) returned from the FDFA

teacher, we define its length as |u| + |v|.

Proposition 7. Suppose the FDFA learner poses an equivalence query forF = (M, {Au}).

The number of states in M is n and the number of states in the largest progress automa-

ton Au is k. In the FDFA teacher, suppose the counterexample uvω returned by the BA

teacher is given by a decomposition (u, v). Then

• the time and space complexity for building the BAs B and B are in O(n2k3) and

O(n2k2) respectively, and

• for the under approximation method, the time and space complexity for analyzing

the counterexample uvω are in O(n2k · (|v|(|v| + |u|)), while for the over approxi-

mation method, the time and space complexity for analyzing the counterexample

uvω are in O(n2k2 · (|v|(|v| + |u|)) and in O(n2k(|v|(|v| + |u|)) respectively.

Proof. • According to Lemma 5, it is immediate that the time and space complex-

ity for building B (respectively B) is in O(n2k3) (respectively, O(n2k2)).
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• From Proposition 3 and 6, the number of states in FA D1 and D2 are both in

O(n + n2k) and the number of states in Du$v is at most |v|(|v| + |u|) since (u, v) is

the returned decomposition of the counterexample uvω. Note that except for case

O3 in the over approximation construction method,Du$v,D1 andD2 are used in

counterexample analysis. When we analyze the spurious negative counterexam-

ple, i.e., case O3, the time and space complexity are inO(nk(n+nk) ·(|v|(|v|+ |u|)))

and O((n + nk) · (|v|(|v| + |u|))) according to Lemma 6. Since the time and space

complexity for case O1 and O3 are both in O(n2k · (|v|(|v| + |u|)), we conclude

that the time and space complexity for the overapproximation method are in

O(n2k2 · (|v|(|v| + |u|)) and in O(n2k(|v|(|v| + |u|)) respectively.

Therefore, we complete the proof. �

Theorem 4 (Query Complexity). Let (u, v) be the longest counterexample returned

from the FDFA teacher. The number of equivalence queries needed for the tree-based

FDFA learning algorithm to learn the periodic FDFA of L is in O(n + nk), while the

number of membership queries is in O((n + nk) · (|u| + |v| + (n + k) · |Σ|)).

For the syntactic and recurrent FDFAs, the number of equivalence queries needed

for the tree-based FDFA learning algorithm is in O(n + n3k), while the number of

membership queries is in O((n + n3k) · (|u| + |v| + (n + nk) · |Σ|)).

Proof. Theorem 4 can be concluded from Lemma 12, Lemma 14, Lemma 15 and

Theorem 3. Suppose F = (M, {Au}) is the corresponding periodic FDFA recognizing

L. The number of states in M is n and k is the number of the largest progress automaton

in F .

Given a counterexample (u, v), the number of membership queries is at most |u|

when we refine the leading automaton and is at most |v| when we refine the progress

automaton. Therefore, the number of membership queries used in analyzing counterex-

ample is bounded by |u| + |v|. We remark that one can also use binary search to reduce

the number of membership queries used by counterexample analysis to log(|u| + |v|).

The membership queries are also needed in constructing the corresponding automata

M or AM(u) after the classification tree has been refined. Suppose the new added ter-

minal node is labeled by p, the terminal node which needs to refined is labeled by q
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and the experiment is e. We only need to compute the successors of p and update the

successors of the predecessors of q.

• Computing the successors of p is to calculate δ(p, a) for every a ∈ Σ, which

requires |Σ| · h membership queries where h is the height of the classification

tree.

• Updating the successors of the predecessors of q is to calculate TE(s, e) for every

state label s and a ∈ Σ such that currently we have δ(s, a) = q, which requires

at most |Σ| · m membership queries where m is the number of states in current

automata M or AM(u).

Since the height of the classification tree is at most m, thus the number of membership

queries needed for constructing the conjectured DFA is at most 2 · m · |Σ|. It follows

that for the tree-based algorithm, the number of membership queries used in the coun-

terexample guided refinement is bounded by |u| + |v| + 2m · |Σ|. We remark that in the

table-based algorithm, the number of membership queries used in the counterexample

guided refinement is bounded by |u| + |v| + m + |Σ| · m + |Σ|, where |u| + |v| member-

ship queries are used for analyzing the counterexample and m + (m + 1)|Σ| membership

queries are used to fill the table.

We give the complexity of the tree-based algorithm as follows.

• For periodic FDFA. During the learning procedure, when receiving a counterex-

ample for FDFA learner, the tree-based algorithm either adds a new state into

the leading automaton or into the corresponding progress automaton. Thus, the

number of the equivalence queries is bounded by n + nk since the number of

states in the target periodic FDFA is at most n + nk. In periodic FDFA, we have

m ≤ n + k since every time we either refine the leading automaton or a progress

automaton. Therefore, the number of membership queries needed for the algo-

rithm is bounded by (n+nk)·(|u|+|v|+2(n+k)·|Σ|) ∈ O((n+nk)·(|u|+|v|+(n+k)·|Σ|))

in the worst case.

• For syntactic and recurrent FDFAs, when receiving a counterexample for FDFA

learner, the tree-based algorithm will first decide whether to refine the leading
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automaton or the progress automaton. If it decides to refine the leading automa-

ton, we need to initialize all progress trees with a single node labeled by ε again,

so the number of states in the progress automata of the FDFA may decrease at

that point, otherwise it refines the progress automaton and the number of states

in FDFA will be increased by one.

In the worst case, the learner will try to learn the progress automata as much as

possible. In other words, if current leading automaton has m states, the number

of states in every progress automaton is at most m · k according to Lemma 14

and Lemma 15. When all progress trees cannot be refined any more, either the

learning task finishes or the FDFA teacher returns a counterexample to refine

the current leading automaton. For the latter case, the number of states in the

leading automaton will be increased by one, that is, m + 1, and we need to redo

the learning work for all progress trees. The number of states in all progress

automata in the new FDFA is bounded by (m + 1)2 · k. Therefore, the number of

equivalence queries needed for tree-based algorithm is bounded by (1+1 ·1 ·k)+

(1+2·2·k)+· · · (1+(n−1)·(n−1)·k)+(1+n·n·k) ∈ O(n+n3k). Similarly, in syntactic

and recurrent FDFAs, we have that m ≤ n + nk since the number of states in a

progress automaton is bounded by nk. It follows that the number of membership

queries needed for the algorithm is in O((n + n3k) · (|u| + |v| + 2(n + nk) · |Σ|)) ∈

O((n + n3k) · (|u| + |v| + (n + nk) · |Σ|)) in the worst case.

�

Learning the syntactic and the recurrent FDFAs requires more queries compared

to learning the periodic FDFAs since once their leading automata have been modified,

they need to redo the learning of all progress automata from scratch.

Theorem 5 (Space Complexity). For all tree-based algorithms, the space required to

learn the leading automaton is inO(n). For learning periodic FDFA, the space required

for each progress automaton is in O(k), while for syntactic and recurrent FDFAs, the

space required is in O(nk). For all table-based algorithms, the space required to learn

the leading automaton is in O((n + n · |Σ|) · n). For learning periodic FDFA, the space
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required for each progress automaton is in O((k + k · |Σ|) · k), while for syntactic and

recurrent FDFAs, the space required is in O((nk + nk · |Σ|) · nk).

Proof. As we mentioned in Sect. 5, the FDFA learner can be viewed as a learner con-

sisting of many component DFA learners. For a component DFA learner, suppose the

number of the states in the target DFA is m, for table-based component DFA learner,

the size of the observation table is in O((m + m · |Σ|) ·m) since there are m + m · |Σ| rows

and at most m columns in the observation table in the worst case. In contrast, for the

tree-based component DFA learner, the number of nodes in the classification tree is in

O(m) since the number of terminal nodes in the classification tree is m and the number

of internal nodes is at most m − 1.

• For the periodic FDFA, the number of states in the FDFA will increase after

each refinement step. Thus, it is easy to conclude that the space required for

the leading automaton is in O(n) if we use tree-based learning algorithm and the

space required by the table-based algorithm is in O((n + n · |Σ|) · n). Similarly, the

space required by tree-based learning algorithm to learn each progress automaton

is in O(k), while for table-based algorithm, the space required is in O((k+k · |Σ|) ·

k).

• For the syntactic and the recurrent FDFA. The learning procedure for the leading

automaton is the same as the one of the periodic FDFA. Thus the space required

by table-based and tree-based algorithm remain the same.

For learning progress automata, the number of states in each progress automaton

is at most nk according to Lemma 14 and Lemma 15. Therefore, for table-based

algorithm, the space required is in O((nk + nk · |Σ|) · nk). While for tree-based

algorithm, the space required to learn each progress automaton is in O(nk).

�

Theorem 6 (Correctness and Termination). The BA learning algorithm based on the

under-approximation method always terminates and returns a BA recognizing the un-

known ω-regular language L in polynomial time. If the BA learning algorithm based
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on the over-approximation method terminates without reporting an error, it returns a

BA recognizing L.

Proof. If we use the under-approximation method to construct the Büchi automaton,

then the BA learning algorithm will need to first learn a canonical FDFA to get a

Büchi automaton in the worst case. If the BA learning algorithm based on the over-

approximation method terminates not because that it cannot find valid counterexamples

for the FDFA learner when dealing with the counterexamples in case O3, the output

BA B must recognize L since B has passed the equivalence query. This theorem is

justified by Lemma 2, Lemma 5 and Theorem 3. �

Given a canonical FDFA F , the under-approximation method produces a BA B such

that UP(F ) = UP(L(B)), thus in the worst case, FDFA learner learns a canonical FDFA

and terminates. In practice, the algorithm very often finds a BA recognizing L before

converging to a canonical FDFA.

10. Experimental results

The ROLL library (http://iscasmc.ios.ac.cn/roll) is implemented in JAVA.

The DFA operations in ROLL are delegated to the dk.brics.automaton package, and we

use the RABIT tool [46, 47] to check the equivalence of two BAs. We evaluate the

performance of ROLL using the smallest BAs corresponding to all the 295 LTL spec-

ifications available in BüchiStore[38], where the numbers of states in the BAs range

over 1 to 17 and transitions range over 0 to 123. The machine we used for the experi-

ments is a 2.5 GHz Intel Core i7-6500 with 4 GB RAM. We set the timeout period to

30 minutes.

The overall experimental results are given in Table 1. In this section, we use L$ to

denote the ω-regular learning algorithm in [31], and LPeriodic, LSyntactic, and LRecurrent to

represent the periodic, syntactic, and recurrent FDFA learning algorithm introduced in

Sect. 5 and 6. From the table, we can find the following facts: (1) The BAs learned

from L$ have more states but fewer transitions than their FDFA based counterparts.

(2) LPeriodic uses fewer membership queries comparing to LSyntactic and LRecurrent. The
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Table 1: Overall experimental results. We show the results of 285 cases where all algorithms can finish

the BA learning within the timeout period and list the number of cases cannot be solved (#Unsolved). The

mark n∗/m denotes that there are n cases terminate with an error (in the over-approximation method) and it

ran out of time for m − n cases. The rows #St., #Tr., #MQ, and #EQ, are the numbers of states, transitions,

membership queries, and equivalence queries. Timeeq is the time spent in answering equivalence queries and

Timetotal is the total execution time. EQ(%) is the percentage of the time for the equivalence queries in the

total running time.

Models L$ LPeriodic LSyntactic LRecurrent

Struct.&

Approxi.
Table Tree

Table Tree Table Tree Table Tree

under over under over under over under over under over under over

#Unsolved 4 2 3 0/2 2 0/1 1 4*/5 0 3*/3 1 0/1 1 0/1

#St. 3078 3078 2481 2468 2526 2417 2591 2591 2274 2274 2382 2382 2400 2400

#Tr. 10.6k 10.3k 13.0k 13.0k 13.4k 12.8k 13.6k 13.6k 12.2k 12.2k 12.7k 12.7k 12.8k 12.8k

#MQ 105k 114k 86k 85k 69k 67k 236k 238k 139k 139k 124k 124k 126k 126k

#EQ 1281 2024 1382 1351 1950 1918 1399 1394 2805 2786 1430 1421 3037 3037

Timeeq(s) 146 817 580 92 186 159 111 115 89 91 149 149 462 465

Timetotal(s) 183 861 610 114 213 186 140 144 118 120 175 176 499 501

EQ(%) 79.8 94.9 95.1 80.7 87.3 85.5 79.3 79.9 75.4 75.8 85.1 84.6 92.6 92.8

reason is that LSyntactic and LRecurrent need to restart the learning of all progress automata

from scratch when the leading automaton has been modified. (3) Tree-based algorithms

always solve more learning tasks than their table-based counterpart. In particular, the

tree-based LSyntactic with the under-approximation method solves all 295 learning tasks.
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Figure 16: Growth of state counts in BA

In the experiment, we ob-

serve that table-based L$ has 4

cases cannot be finished within

the timeout period, which is the

largest number among all learn-

ing algorithms2. We found that

for these 4 cases, the average time

required for L$ to get an equiva-

lence query result is much longer

than the FDFA algorithms. Under

2Most of the unsolved tasks using the over-approximation method are caused by the situation that the

FDFA teacher cannot find a valid counterexample for refinement.
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scrutiny, we found that the growth rate of the size (number of states) of the conjectured

BAs generated by table-based L$ is much faster than that of table-based FDFA learning

algorithms. In Fig. 16, we illustrate the growth rate of the size (number of states) of

the BAs generated by each table-based learning algorithm using one learning task that

cannot be solved by L$ within the timeout period. The figures of the other three learn-

ing tasks show the same trend and hence are omitted. Another interesting observation

is that the sizes of BAs generated by LSyntactic can decrease in some iteration because

the leading automaton is refined at those iterations and thus the algorithms have to redo

the learning of all progress automata from scratch.

To our surprise, in our experiment, the size of BAs B produced by the overapprox-

imation method is not much smaller than the BAs B produced by the underapprox-

imation method. Recall that the progress automata of B comes from the product of

three DFAs Mu
u × (Au)su

v × (Au)v
v while those for B comes from the product of only two

DFAs Mu
u × (Au)su

v (Sect. 7). We found the reason is that very often the language of

the product of three DFAs is equivalent to the language of the product of two DFAs

, thus we get the same DFA after applying DFA minimizations. Nevertheless, the

over-approximation method is still helpful for LPeriodic and LRecurrent. For LPeriodic, the

over-approximation method solved more learning tasks than the under-approximation

method. For LRecurrent, the over-approximation method solved one tough learning task

that is not solved by the under-approximation method.

As we mentioned at the end of Sect. 6.2, a possible optimization is to reuse the

counterexample and to avoid equivalence query as much as possible. The optimization

helps the learning algorithms to solve 9 more cases that were not solved before.

Given an FDFA F , the number of states of LDBA constructed by Definition 9 is

quadratically larger than that in the corresponding NBA constructed by Definition 8.

Therefore, in order to learn a LDBA we can construct NBAs for the equivalence queries

and construct a LDBA from the FDFA for final result once the learning task succeeds.

We use this strategy to learn the LDBAs from the BAs of the BüchiStore. Since the

learning procedure is the same as usual except we construct a LDBA from the final

FDFA, we only compare the number of states between NBAs and LDBAs learned

from the tree-based algorithms in Fig. 17. The comparison of number of states be-
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Figure 17: The number of states comparison between NBAs and LDBAs learned from tree-based algorithms

tween NBAs and LDBAs learned from table-based algorithms share the same trend

and thus are omitted. From Fig. 17, we can see that most of points are above the diago-

nal which indicates the number of states in LDBAs are larger than those in NBAs when

we consider large BAs. This is because the number of states of LDBAs are quadrati-

cally larger than those of NBAs. We also observe that there are a lot of points which

are below the diagonal. The reason is that the construction of LDBA in Definition 9 re-

quires first remove all states which cannot reach the accepting states in the DFA, while

construction of BAs in Definition 8 does not use the same removal operation.

11. Discussion and Future works

Regarding our experiments, the BAs from LTL specifications are in general sim-

ple; the average sizes of the learned BAs are around 10 states. From our experience of

applying DFA learning algorithms, the performance of tree-based algorithms is signif-

icantly better than the table-based ones when the number of states of the learned DFA

is large, say more than 1000. We believe this will also apply to the case of BA learn-

ing. Nevertheless, in our current experiments, most of the time are spent in answering

equivalence queries. One possible direction to improve the scale of the experiment is

to use a PAC (probably approximately correct) BA teacher [48] instead of an exact one,

so the equivalence queries can be answered faster because the BA equivalence testing
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will be replaced with a bunch of BA membership testing.

There are several avenues for future works. We believe the algorithm and library

of learning BAs should be an interesting tool for the community because it enables the

possibility of many applications. For the next step, we will investigate the possibility

of applying BA learning to the problem of reactive system synthesis, which is known

to be a very difficult problem.

There are learning algorithms for residual NFA [2], which is a more compact canon-

ical representation of regular languages than DFA. We think maybe one can also gener-

alize the learning algorithm for family of DFAs to family of residual NFAs (FRNFA).

To do this, one needs to show FRNFAs also recognize ω-regular language and finds the

corresponding right congruences.
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Appendix

In this section, we show that although our acceptance condition defined in Sect. 2

is different from the original one defined in [1], but the ultimately periodic words of

the FDFA will be preserved.

Recall that the original acceptance condition for periodic FDFA in [1] is that (u, v)

is accepted by F if v ∈ L(Aũ) where ũ = M(u). While the original acceptance condi-

tions for syntactic and recurrent FDFA in [1] are the same as the one defined in this

paper. More specifically, (u, v) is accepted by F if M(uv) = M(u) and v ∈ L(AM(u)).

The set of ultimately periodic words of an FDFA F is defined as UP(F ) = {uvω |

(u, v) is accepted by F }. The acceptance condition for periodic FDFA used in this pa-

per is different from the original one in [1]. We prove that the acceptance condition

does not change the ultimately periodic words of the periodic FDFAs.

Lemma 16. Let F be a periodic (syntactic, recurrent) FDFA under the acceptance

condition in [1], then UP(F ) is preserved under the acceptance condition defined in

this paper.

Proof. We only need to prove the preservation of ultimately periodic words for the pe-

riodic FDFAs. Given a periodic FDFA F , the original acceptance condition of periodic

FDFA requires that (u, v) is accepted by F if v ∈ L(Aũ) where ũ = M(u). Clearly, the

acceptance condition defined in this paper implies the original acceptance condition

for the periodic FDFA. Therefore, we only need prove that if (u, v) satisfies the orig-

inal acceptance condition, then there exists some decomposition (x, y) of ω-word uvω

which satisfies our acceptance condition. To achieve this, we first find a normalized

formalization (x, y) of (u, v) such that x = uvi, y = v j and xy vM x for some i ≥ 0, j ≥ 1

according to [1]. Further, it is known that periodic FDFA is saturated in the sense that

under the original acceptance condition, if (u, v) is accepted by F , then every decom-

position of uvω is accepted by F . Therefore we have that (x, y) is accepted by F , which

means that y ∈ L(Ax̃) where x̃ = M(x). It follows that (x, y) is accepted by F under our

acceptance condition.

We remark that in [1], they also define an acceptance condition called normalized

68



acceptance condition, which is able to make the syntactic and recurrent FDFAs satu-

rated in the sense that if (u, v) is accepted by the FDFA, then every decomposition of

uvω is accepted by the FDFA. Since our goal is to learn a BA in this paper, we do not

require the saturation property for all decompositions of accepted ω-word. Thus, we

do not use the normalized acceptance condition.
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